786 resultados para compressão


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study and selection of an equipment of air conditioner for any type of environment, should be made without overestimate or undersizing the project. The undersizing does not provide an adequate comfort temperature if the environment is too hot because the air conditioner does not remove all the heat necessary in the environment. But if the project is oversized, energy consumption is higher and there is an unnecessary cost. To prevent these failures is necessary to make a calculation of the thermal load on the environment and choose the equipment that has a higher cooling capacity than the calculated heat load and closer to the calculated heat load. In this graduate work will be chosen an air-conditioned equipment for bus, showing the calculations made for the thermal load for various types of heat gain in this type of vehicle. The thermal load on vehicles is more complicated to calculate than in areas because there are several factors that vary with the movement of the vehicle. It will also explain the compression refrigeration cycle, which is the cooling system used in vehicles because it is weightless, compact and lower cost. From the calculated heat load, it will be chosen an air conditioner that best suits the project and, finally, a brief presentation of the selected equipment will be made

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In civil engineering, a structure is the whole sustainment of a construction and, thus, it is important that it remains intact throughout its lifetime. An engineering construction must last for decades without losing its functionality. However its purpose may be altered and several times the original structure does not meet the new needs of use. Still, in new buildings, the functionality is altered due to possible flaws in execution and the structure, invariably does not reach the desired solicitation needs. In cases like this, the commonly adopted solutions are, basically, the demolishment followed by the reconstruction of the desired mold or the structural reinforcement. This second option, for long years, has not been put to practice due to certain factors such as the high costs for its implantation, use of inadequate reinforcement execution techniques, and the culture of people involved in the area regarding its use and, in this case, the option would always be the reconstruction. Thoughtout the years, some techniques were developed to allow the execution of structural reinforcements with low costs and in efficient ways. An interesting, fast, efficient and economical technique is the structural reinforcement through metal sheets put together with epoxy resin that can be applied in beams, slabs and pillars. In the present work the different behavior of beams reinforced with this technique. Steel is a very recommended material for these reinforcements due to its characteristics related to traction, compression and the effectiveness of the technique related to its cost. For the attachment the epoxy resin is recommended, since it allows the joining of two materials, in this case, steel and concrete. The efficiency of this union is so considerably high that it rarely produces any flaws in adherence and, normally, when it happens it is due to problems in the execution process, not in the union of materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the development of this graduate work of fractal fracture behavior, it is necessary to establish references for fractal analysis on fracture surfaces, evaluating, from tests of fracture tenacity on modes I, II and combined I / II, the behavior of fractures in fragile materials, on linear elastic regime. Fractures in the linear elastic regime are described by your fractal behavior by several researchers, especially Mecholsky JJ. The motivation of that present proposal stems from work done by the group and accepted for publication in the journal Materials Science and Engineering A (Horovistiz et al, 2010), where the model of Mecholsky could not be proven for fractures into grooved specimens for tests of diametric compression of titania on mode I. The general objective of this proposal is to quantify the distinguish surface regions formed by different mechanisms of fracture propagation in linear elastic regime in polymeric specimens (phenolic resin), relating tenacity, thickness of the specimens and fractal dimension. The analyzed fractures were obtained from SCB tests in mode I loading, and the acquisition of images taken using an optical reflection microscope and the surface topographies obtained by the extension focus method of reconstruction, calculating the values of fractal dimension with the use of maps of elevations. The fractal dimension was classified as monofractal dimension (Df), when the fracture is described by a single value, or texture size (Dt), which is a macroscopic analysis of the fracture, combined with the structural dimension (Ds), which is a microscopic analysis. The results showed that there is no clear relationship between tenacity, thickness and fractal values for the material investigated. On the other hand it is clear that the fractal values change with the evolution of cracks during the fracture process ... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pressure drop and energy efficiency of compressors in chemical plants are the focus of this study. Its objective is an analysis of possible sources of energy loss through the study of pressure loss in pipes, calculation of thermodynamic efficiency of the compressors. Important issues are raised for this analysis such as the types of compressors, the operating range of each compressor, compression types, as well as a study of accessories such as filters and valves. After studying these issues was carried out calculations of pressure drop step-bystep and with a software WIPCD. Followed by the calculation of efficiency of compressors and monthly energy cost of each compressor in operation. Finally, the study shows some suggestions for immediate improvements, changes and suggestions for possible future purchases of compressors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction industry is booming, and the federal government is heavily financially supporting public housing. This scenario is very favorable for the development of construction materials, especially low-cost construction. Thus, this study aims to develop a new class of unfired clay masonry bricks: GGBS stabilized bricks. Studies show that the ground granulated blast furnace slag, a material used as raw material in cement manufacture, can be used together with calcium oxide in soil stabilization for the manufacture of bricks. This study aims to test and identify the best parameters for the manufacture of unfired bricks, adapting its composition to the materials found in Brazil and identify the optimum curing conditions for our climate. So far preliminary studies were done to verify the technical feasibility of the material. Future studies should be done to ascertain the economic feasibility and environmental gains of such material

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The internal combustion engine is a heat engine widely used in the automotive industry. In order to better understand its behavior many models in the literature have been proposed in the last years. The 0-D thermodynamic model is a fairly simple tool but it is very useful to understand the phenomenon of combustion inside the chamber of internal combustion engines. In the first phase of this work, an extensive literature review was made in order to get information about this kind of analysis and, after this, apply them in a model able to calculate the instantaneous temperature and pressure in one zone of the combustion chamber of a diesel engine. Therefore some considerations were made with the aim of increasing the accuracy of the model in predicting the correct behavior of the engine, adding the combined effects of heat transfer, leakage and injection. In the second phase, the goal was to study the internal flow of a three-dimensional model of an internal combustion engine. In order to achieve this goal the software Solidworks was used to create the geometries of an engine and the suite of softwares Ansys was used to create the moving mesh (ICEM CFD and CFX-Pre) and to solve the CFD problem (Ansys CFX code). The model was able to perform the air flow simulation during the four-stroke cycle of an engine: admission, compression, expansion and exhaust. The results obtained from both models were suitable and they open a new range of possibilities for future researches on the field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need to reduce environmental damage and add value to waste causes more and more new alternatives appear to unite these two points. One of the main ways to achieve this in timber industries and the use of waste for making panels. This work was aimed at studying the influence of particle size and density in Eucalyptus mechanical compressive strength of cement composite wood. For this study was performed production and physico-mechanical characterization of specimens, using portland cement, water and waste eucalyptus. The methodology consists of a statistical study of the results obtained by calculating the density and axial compression tests and a subsequent comparison of these results with other studies. The results showed that there are significant differences in density and compressive strength when using different particle sizes the particles of eucalyptus. In general, the smaller the particle size, the lower the compression strength and the greater the density when the samples are produced with the same trait

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of physical and mechanical properties of wood is essential for its structural use and it is of great importance to the construction industry. Thus, this study aimed to determine the physical and mechanical properties of the wood Amaru - a hybrid of Eucalyptus, developed by Plantar Projects and Forest Products Ltda. In order to determine the properties of Amaru, round samples were used, which were provided to the Laboratory of Wood and Wooden Structures of the School of Engineering of São Carlos, University of São Paulo - LaMEM / EESC / USP. For the characterization of the physical properties, the apparent specific gravity and moisture content of the samples were determined. To the mechanical characterization, the following properties were evaluated: strength and stiffness in compression, strength and stiffness in bending, shear and tension. The procedures of the tests performed in this study were done according to the recommendations of the Brazilian Wood Standard ABNT NBR 7190:1997. The specimen used were confectioned in actual dimensions, according to as those used in the construction system proposed by Plantar. The results obtained from the tests performed showed that the mechanical properties approached the values proposed by the Wood Standard NBR 7190. The visual grading was important to provide a primary idea about the failure modes to be obtained from the tests performed. The bending test showed the modulus of elasticity (MOE) and Modulus of Rupture (MOR), which resulted in 15822 MPa and 101,7 MPa, respectively. The compression test resulted in values Ec0,m and fc0, 15698 MPa and 50,7 MPa. The tensile strength (ft0) of this hybrid was calculated and its value obtained was 60,8 MPa. The shear strength (fv0) was 8,2 MPa. The results obtained from the tests are the basis for engineers and architects to design structures using wood species Amaru

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plastic deformation is widely used in the metallurgical market due to its positive factors such as low prices and high speed production. Forming process products are obtained in high quality, both surface quality and mechanical properties. Friction is an importante factor in metal forming. Friction study in metal forming can be accomplished indirectly, such as the ring test of friction. Two samples of different materials being mild steel and copper alloy were used. The results showed the influence of friction in the flow behavior of the deformation of the second phase, as evidenced by standard metallography. It is observed that in the outer regions of the ring, plastic deformation occured in the radial direction. In the central region of the disc deformation occured in the direction of compression and the inner region of the ring flux lines showed a significant deformation in the radial direction towards the center of the ring

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for a more aware use of available raw materials has led to a need to create more sustainable products. The use of natural fibers to reinforce cement, for instance, has been widely studied in the past decades because of the possibility that they can improve material properties such as thermal resistance and to compression, besides conferring a decrease in their total weight. This present study aimed at to conduct preliminary studies on the thermal resistance of the composite cement - Cellulose Pulp, using waste from the pulp and paper industry. Through experiments, it was found that the composite manufactured using the ratio 30 % Portland cement and 70 % pulp, showed satisfactory results regarding its thermal resistance, so it could be considered as a potential thermal insulation material, for use in constructions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Farmacêuticas - FCFAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work are discussed the main types of rivets, their characteristics and applicability within the Aeronautical Industry branch. Here are highlighted the solid rivets, showing off its layout, forms and limits of installation, that are required by aviation regulators. The riveting is a popular and simple procedure of fixing and joining two or more parts, and like any other manufacturing process is subject to process deviations that in some situations are beyond the limits of tolerance. One of these deviations is when the hole diameter exceeds the one proposed in project and which is limited by the rule of edge distance. The overall objective here is to study a possible solution to this problem: the installation of a rivet that has his diameter previously increased by compression. Observe the hole filling after riveting, detect the presence of cracks, discover the yield curve of the fasteners and their the crushing limits for failure prediction are tools used to verify this proposal. They demonstrate, at the end of study, the inefficiency of this procedure, with results that go against the safe fixing of parts in a structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This graduation work done study of polyamide 6.6/composite carbon fibres, since its processing, characterization of the main properties. Besides the influence of temperature, UV radiation, salt spray and moisture on the mechanical and viscoelastic behavior. To achieve this goal, the first composite was processed from the heat compression molding using known variables of the process and using the empirical method to find the best value for other parameters. The method processing molding was chosen because it common in composites processing in order to evaluate the influence of crystallinity of the properties that influence the mechanical and viscoelastic behavior laminates. From the obtained laminate specimens were evaluated in weathering, such as: in hygrothermal chamber, UV, salt spray and thermal shock. In another step, the effect produced by these constraints were evaluated by optical microscopy, ultrasound, dynamic mechanical analysis and vibration tests. This project was conducted at the Department of Technology and Materials of UNESP in Guaratingueta, where all the equipment and techniques for the implementation of this project met available. After the tests proved the applicability of the composite polyamide 6.6/carbon fibers in aeronautical applications with resistance the main climatic influences