862 resultados para composites
Resumo:
O desenvolvimento de materiais de carbono continua a ser, na atualidade, uma das áreas de grande interesse junto das comunidades científica e industrial [1]. Especial atenção é dada à valorização de resíduos da indústria, de baixo valor económico, tentando desta forma resolver problemas de gestão de grandes quantidades de desperdícios [2]. De especial relevo destacamos os resíduos potencialmente perigosos, segundo os dados da FAO – Food and Agriculture Organization das Nações Unidas [3]. O desenvolvimento de novos materiais para a indústria do mobiliário, substitutos da madeira, tem gerado uma enorme diversidade de produtos mas também de resíduos. Os mais comuns no mercado são os materiais compósitos, entre eles o PB – ParticleBoard e o MDF – Medium Density Fibreboard, os quais registam um aumento de consumo na Europa de 1,3% e 4,3%, respetivamente, mesmo em período de crise económica como a que estamos a atravessar [3]. O presente trabalho tem como objetivo o estudo do potencial destes resíduos para a produção de carvões ativados (CA) em formas monolíticas, gerando um produto com um elevado valor acrescentado e com características inovadoras para a posterior aplicação em processos de adsorção.
Resumo:
Free fatty acids (palmitic, stearic and oleic acid) were converted into biodiesel with methanol over composites catalysts consisting in SBA-15 with sulfonic acid groups (SBA-15-SO3H) immobilized in Chitosan (CH), at 60ºC. It was observed that the catalytic activity increased with the amount of SBA-15-SO3H dispersed in CH. It was also observed that the catalytic activity decreased in the series: palmitic acid > stearic acid > oleic. The catalytic stability of [SBA-15-SO3H]3/CH composites was studied. A good stability was observed.
Resumo:
A series of activated carbon was produced from particleboard and medium-density fibreboard monoliths, which are waste originated from the industry, and then characterized and evaluated for potential application for phenoxyacetic acids removals, such 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxy acetic acid (MCPA) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), from the liquid phase. All AC retain the shape of the precursor, and displays a microporous structure well-developed, reaching 0.58 cm 3 g -1. The adsorption isotherms for three pesticides were obtained in the optimal conditions and the AC with high superficial area and micropore volume exhibited better performance, allowing to state that, this AC could be a great substitute of those habitually used for this purpose. The pesticides adsorption data were linearized using the Langmuir and Freundlich equation, being the first a very good fit to the experimental data.
Resumo:
A series of activated carbon was produced from particleboard and medium-density fibreboard monoliths, which are waste originated from the industry, and then characterized and evaluated for potential application for phenoxyacetic acids removals, such 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxy acetic acid (MCPA) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), from the liquid phase. All AC retain the shape of the precursor, and displays a microporous structure well-developed, reaching 0.58 cm 3 g -1. The adsorption isotherms for three pesticides were obtained in the optimal conditions and the AC with high superficial area and micropore volume exhibited better performance, allowing to state that, this AC could be a great substitute of those habitually used for this purpose. The pesticides adsorption data were linearized using the Langmuir and Freundlich equation, being the first a very good fit to the experimental data.
Resumo:
A composite is a material made out of two or more constituents (phases) combined together in order to achieve desirable mechanical or thermal properties. Such innovative materials have been widely used in a large variety of engineering fields in the past decades. The design of a composite structure requires the resolution of a multiscale problem that involves a macroscale (i.e. the structural scale) and a microscale. The latter plays a crucial role in the determination of the material behavior at the macroscale, especially when dealing with constituents characterized by nonlinearities. For this reason, numerical tools are required in order to design composite structures by taking into account of their microstructure. These tools need to provide an accurate yet efficient solution in terms of time and memory requirements, due to the large number of internal variables of the problem. This issue is addressed by different methods that overcome this problem by reducing the number of internal variables. Within this framework, this thesis focuses on the development of a new homogenization technique named Mixed TFA (MxTFA) in order to solve the homogenization problem for nonlinear composites. This technique is based on a mixed-stress variational approach involving self-equilibrated stresses and plastic multiplier as independent variables on the Reference Volume Element (RVE). The MxTFA is developed for the case of elastoplasticity and viscoplasticity, and it is implemented into a multiscale analysis for nonlinear composites. Numerical results show the efficiency of the presented techniques, both at microscale and at macroscale level.
Resumo:
The growing demand for lightweight solutions in every field of engineering is driving the industry to seek new technological solutions to exploit the full potential of different materials. The combination of dissimilar materials with distinct property ranges embodies a transparent allocation of component functions while allowing an optimal mix of their characteristics. From both technological and design perspectives, the interaction between dissimilar materials can lead to severe defects that compromise a multi-material hybrid component's performance and its structural integrity. This thesis aims to develop methodologies for designing, manufacturing, and monitoring of hybrid metal-composite joints and hybrid composite components. In Chapter 1, a methodology for designing and manufacturing hybrid aluminum/composite co-cured tubes is assessed. In Chapter 2, a full-field methodology for fiber misalignment detection and stiffness prediction for hybrid, long fiber reinforced composite systems is shown and demonstrated. Chapter 3 reports the development of a novel technology for joining short fiber systems and metals in a one-step co-curing process using lattice structures. Chapter 4 is dedicated to a novel analytical framework for the design optimization of two lattice architectures.
Resumo:
Over the last decade, graphene and related materials (GRM) have drawn significant interest and resources for their development into the next generation of composite materials. This is because these nanoparticles have the ability to operate as reinforcing additives capable of imparting considerable mechanical property increases while also embedding multi-functional advantages on the host matrix. Because graphene and 2D materials are still in their early stages, the relative maturity of different types of composite systems varies. As a result, certain nanocomposite systems are currently commercially accessible, while others are not yet sufficiently developed to enter the market. A substantial emphasis has been placed on developing thermoplastic and thermosetting materials that combine a variety of mechanical and functional qualities. These include higher strength and stiffness, increased thermal and electrical conductivity, improved barrier properties, fire retardancy, and others, with the ultimate goal of providing multifunctionality to already employed composites. The work presented in this thesis investigates the use and benefits that GRM could bring to composites for a variety of applications, with the goal of realizing multifunctional components with improved properties that leads to lightweight and, as a result, energy and cost savings and pollution reduction in the environment. In particular, we worked on the following topics: • Benchmarking of commercial GRM-based master batches; • GRM-coatings for water uptake reduction; • GRM as thermo-electrical anti-icing /de-icing system; • GRM for Out of Oven curing of composites.
Resumo:
Electrospinning is the most common and industrially scalable technique for the production of polymeric nanofibers. Currently, nanocomposites are drawing much interest for their excellent properties in terms of flexibility, electrical conductivity and high surface area, which enhances the interaction with the surrounding environment. The objective of this thesis was the optimization of different electrospinning setups for the production of nanostructured polymeric composites using graphene-related materials as nanofillers. Such composites were obtained using different polymers as matrix (polyamide 6, polyinylidene fluoride and polylactic acid) that were selected and combined with the appropriate reinforcements based on their properties and their interest for specific applications. Moreover, this study highlighted the possibility to tune the morphology and size of the produced nanofibers by the addition of appropriate nanofillers even in low amounts. The addition of only 0.5% of GO allowed the production of smooth nanofibers with diameters up to 75% thinner (in the case of PLA) than the ones obtained from the pristine polymer. PVdF was charged with GO to produce triboelectric materials that can be exploited in a wearable nanogenerator for the conversion of human motion energy in electrical energy. The addition of GO improved the open-circuit voltage and power-output of a generator prototype by 3.5 times. Electrospun PA6 membranes were coated with rGO using a simple two-step technique to produce conductive textiles for wearable electronic applications. The sheet resistance of the produced materials was measured in approximately 500 Ω/sq and their resistance to washing and bending was successfully tested. These materials could be exploited as strain sensors or heating elements in smart textiles. PLA was co-electrospun with GO and cellulose nanofibers to produce high-surface area and porosity mats that could be exploited for the production of functionalized highly selective adsorption membranes with low pressure drops.
Enhancing predictive capability of models for solubility and permeability in polymers and composites
Resumo:
The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - polymer system at molten or glassy state is relevant in many industrial applications. Among tools available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to consistently extend the description of thermodynamic properties of solute polymer systems obtained through a suitable equilibrium model to the case of non-equilibrium conditions below the glass transition temperature. The first objective of this work is to investigate the phase behaviour in solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor solubility that could be applied in several different applications: membrane gas separation, barrier materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts to develop a predictive tool of this kind, a revision of the group contribution method developed by High and Danner for the application of LF model by Panayiotou and Vera is considered, with reference to possible alternatives for the mixing rule for characteristic interaction energy between segments. The work also devotes efforts to the analysis of gas permeability in polymer composite materials as formed by a polymer matrix in which domains are dispersed of a second phase and attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of dispersed domains and loading.
Resumo:
HP Composites, azienda leader nella produzione di componenti in fibra di carbonio, a seguito della crescita di ordini commissionati dai suoi clienti, ha deciso di affidare a dei fornitori la produzione di alcune commesse, in alcune o in tutte le fasi del loro ciclo. L’elaborato di tesi nasce da un’esperienza di tirocinio nell’ufficio pianificazione di HP Composites, e si pone l’obiettivo di analizzare tutte le attività che, evitando di dedicare risorse alle lavorazioni selezionate, deve compiere per supportare il fornitore; l’analisi è stata effettuata tramite la costruzione di un diagramma di flusso e fornendo un indicazione del tempo richiesto da ogni attività, per poi poi avanzare delle proposte di ottimizzazione. Il ciclo commessa può essere suddiviso in quattro fasi: scelta della commessa e selezione del fornitore, attivazione del fornitore, gestione settimanale dell’evasione degli ordini e gestione del fine commessa. L’ufficio acquisti nel tempo si è specializzato individuando i temi da chiarire prima di attivare la fornitura per evitare l’insorgere di problematiche a produzione già attivata. Per quanto riguarda la gestione settimanale del fornitore, è stato istituito il ruolo del responsabile delle esternalizzazioni, una figura che funga da intermediario con il fornitore e monitori la produzione esterna: questa figura apporta un'alta quantità di interazioni, ma HP valuta maggiori i vantaggi di questa gestione centralizzata. Inoltre nel tempo le attività pianificazione sono state ottimizzate grazie alla stesura di file precompilati da aggiornare. Un’attività fonte di inefficienza è quella dell’emissione dei documenti di trasporto, soprattutto nel caso in cui il compito di consegnare il prodotto al cliente è deputato al fornitore di conto lavoro: HP Composites ha intenzione di implementare un lettore barcode per l’emissione del documento che ridurrebbe i tempi richiesti dall’attività e permetterebbe una gestione del conto lavoro a sistema più corretta.
Resumo:
This study investigated the effect of the incorporation of an iodonium salt in experimental composites, on the bond strength of metallic brackets bonded to bovine teeth. Two hundred and seventy bovine teeth were embedded in self-curing acrylic resin and divided into 18 groups (n=15), according to the experimental composite with an iodonium salt at molar concentrations 0 (control), 0.5, or 1%; the light-activation times (8, 20 and 40 s); and the storage times (10 min or 24 h). Metallic brackets were fixed on the tooth surface using experimental composites. Photoactivation was performed with a quartz-tungsten-halogen light-curing unit curing unit for 8, 20 and 40 s. The specimens were stored in distilled water at 37 °C for 10 min or 24 h and submitted to bond strength test at 0.5 mm/min. The data were subjected to three-way ANOVA and Tukey's test (α=0.05). The Adhesive Remnant Index (ARI) was used to classify the failure modes. The shear bond strengths (MPa) at 10 min for light-activation times of 8, 20 and 40 s were: G1 - 4.6, 6.9 and 7.1; G2 - 8.1, 9.2 and 9.9; G3 - 9.1, 10.4 and 10.7; and at 24 h were: G1 - 10.9, 11.1 and 11.7; G2 - 11.8, 12.7 and 14.2; G3 - 12.1, 14.4 and 15.8. There was a predominance of ARI score 3 for groups with 10 min storage time, and ARI score 2 for groups with 24 h storage time. In conclusion, the addition of iodonium salt (C05 and C1) to the experimental composite may increase the bond strength of brackets to bovine enamel using reduced light exposure times.
Resumo:
The durability of the cellulose-cement composites is a decisive factor to introduce such material in the market. Polymers have been used in concrete and mortar production to increase its durability. The goal of this work was the physical and mechanical characterization of cellulose-cement composites modified by a polymer and the subsequent durability evaluation. The work also evaluated the dispersion of acrylic polymer in composites made of Pinus caribaea residues. The physical properties observed were water absorption by immersion and bulk density. Rupture modulus and toughness were determined by flexural test. The specimens were obtained from pads, produced by pressing and wet curing. Samples were subjected to accelerated aging tests by repeated wetting and drying cycles and hot-water bath and natural aging. The scanning electron microscopy (SEM) allowed verifying the fiber and composite characteristics along the time. For the composite range analyzed, it was observed the polymer improved the mechanical properties of composites besides a significant decreasing in water absorption. The use of polymer improved the performance of vegetable fiber-cement composites when compared to the conventional mortar, due to water absorption decreasing.
Resumo:
The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al2O3) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al2O3 grain size: A - 250 µm; B - 180 µm; C- 110 µm; and D - 50 µm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (α=0.05). The highest bond strength means were recorded in 250 µm group without laser welding. The lowest shear bond strength means were recorded in 50 µm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Shear bond strength decreased in the laser welded specimens.
Resumo:
OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (μTBS) and microshear bond strength (μSBS) tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0)C/24 h) specimens were stressed (0.5 mm/min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.
Resumo:
Foram estudadas as propriedades térmicas e mecânicas de compósitos de polipropileno, virgem e reciclado, reforçados com 30% em massa de fibras residuais de sisal, assim como o perfil de processamento e a morfologia da matriz polimérica. Para tanto, foram determinadas a resistência à tração, o módulo de Young, alongamento na ruptura, e energia de impacto. As amostras também foram caracterizadas por MEV, DMTA e TG. Para ambos os compósitos de polipropileno, virgem e reciclado, com a adição das fibras, o alongamento na ruptura mostrou uma queda significativa, enquanto que a resistência à tração não sofreu grandes variações. Houve um aumento significativo nos valores de tração na ruptura e de energia de impacto com a adição das fibras de sisal na matriz de polipropileno. As análises térmicas mostraram ligações secundárias, como as ligações polares, entre as fibras e a matriz, concordando com o comportamento mecânico dos compósitos. Constatou-se que a temperatura de transição vítrea não variou após a adição da fibra.