806 resultados para composite multiscale entropy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assessed the in vitro influence of surface sealing on the surface roughness of a posterior resin composite before and after tooth-brushing. Thirty. specimens (13 nun diameter x 1 mm high) were fabricated from Filtek-P60 resin composite and randomly assigned to three groups (n=10): a non-sealed control and two groups sealed with one of the tested materials-a surface-penetrating sealant (Protect-it!-PI) and a one bottle adhesive system (Single Bond-SB). The samples were subjected to a surface roughness reading to determine the initial roughness, then submitted to simulated toothbrushing with 35,600 cycles for 100 minutes. Specimens were then cleaned and a post-abrasion surface roughness reading accomplished. Means (pm), recorded before (B) and after (A) toothbrushing, and standard deviations were: Control-(B): 0.032 (+/-0.005), (A): 0.054 (+/-0.005); PI-(B): 0.034 (+/-0.005), (A): 0.060 (+/-0.034); SB (B): 0.031 (+/-0.004), (A): 0.047 (+/-0.007). Data were tabulated and submitted to two-way ANOVA. No statistically significant difference was observed when the control and experimental groups were compared. However, a significant difference (p<0.05) was found between the measurements performed before and after toothbrushing. Based on these results, it may be concluded that using either a surface penetrating sealant or a one bottle adhesive system did not provide the optimization of superficial integrity. The use of a dentifrice and toothbrush resulted in significant alterations to the surface smoothness of the resin composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the influence of light-curing units (LCUs) on Knoop microhardness (KHN) of different composite resins formulations. Four LCUs, one Quartz-Tungsten-Halogen (QTH) for 20 s, one Argon-Ion-Laser (AL) for 10 s, one Plasma-Arc-Curing (PAC) for 9 s, and one Light-Emitting-Diode (LED) for 20 s, and three composite resins, nanofill and easy cure (Filtek (TM) Supreme), microhybrid and medium cure (Herculite XRV), and microfill and difficult cure (Heliomolar) were used. Discs (4 x 2 mm(2)) of each composite resin were divided in 12 Groups and KHN was measured at the top (T) and bottom (B) surfaces. Data were analyzed using two-way ANOVA and Tukey's test (p < 0.05). Top presented significantly higher KHN than bottom surface for all composite resins and LCUs tested. Statistical significant differences were observed among the LCUs. At the bottom surface QTH and LED presented higher KHN than PAC and LA. However, at the top surface PAC and LA presented similar results than QTH for nanofill and microhybrid composite resins. Different LCUs play an important effect on Knoop microhardness and the composite resin formulations were significant factor on the photosensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the polymerization effectiveness of a composite resin (Z-250) utilizing microhardness testing. In total, 80 samples with thicknesses of 2 and 4 mm were made, which were photoactivated by a conventional halogen light-curing unit, and light-curing units based on LED. The samples were stored in water distilled for 24 h at 37C. The Vickers microhardness was performed by the MMT-3 microhardness tester. The microhardness means obtained were as follows: G1, 72.88; G2, 69.35; G3, 67.66; G4, 69.71; G5, 70.95; G6, 75.19; G7, 72.96; and G8, 71.62. The data were submitted to an analysis of variance (ANOVA's test), adopting a significance level of 5%. The results showed that, in general, there were no statistical differences between the halogen and LED light-curing units used with the same parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of two light-curing units (QTH and LED) on microleakage of Class II composite resin restorations with dentin cavosurface margins. Twenty extracted mandibular first premolars, free of caries and fractures were prepared two vertical slot cavities in the occluso-mesial and -destal surfaces (2 mm buccal-lingually, 2 mm proximal-axially and cervical limit in enamel) and divided into 4 equal groups (n = 8): GI and GII: packable posterior composite light-activated with LED and QTH, respectively; GIII and GIV: micro-hybrid composite resin light-activated with LED and QTH, respectively. The composite resins were applied following the manufacturer's instructions. After 24 h of water storage specimens were subjected to thermocycling for a total of 500 cycles at 5 and 55A degrees C and the teeth were then sealed with impermeable material. Teeth were immersed in 0.5% Basic fuchsin during 24 h at room temperature, and zero to three levels of penetration score were attributed. The Mann-Whitney and Kruskal-Wallis tests showed significant statistically similar (P > 0.05) from GI to GII and GIII to GIV, which the GII (2.750) had the highest mean scores and the GIII and GIV (0.875) had lowest mean scores. The use of different light-curing units has no influence on marginal integrity of Class II composite resin restorations and the proprieties of composite resins are important to reduce the microleakage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light dynamics is a relevant phenomenon with respect to esthetic restorations, as incorrect analysis of the optical behavior of natural dentition may lead to potential clinical failures. The nature of incident light plays a major role in determining the amount of light transmission or reflection, and how an object is perceived depends on the nature of the light source. Natural teeth demonstrate translucency, opalescence, and fluorescence, all of which must be replicated by restorative materials in order to achieve clinical success. Translucency is the intermediary between complete opacity and complete transparency, making its analysis highly subjective. In nature, the translucency of dental enamel varies from tooth to tooth, and from individual to individual. Therefore, four important factors must be considered when appraising translucency. Presence or absence of color, thickness of the enamel, degree of translucency, and surface texture are essential components when determining translucency. State-of-the-art resin composites provide varying shades and opacities that deliver a more faithful reproduction of the chromaticity and translucency/opacity of enamel and dentin. This enables the attainment of individualized and customized composite restorations. The objective of this article is to provide a review of the phenomena of translucency and opacity in the natural dentition and composite resins, under the scope of optics, and to describe how to implement these concepts in the clinical setting.CLINICAL SIGNIFICANCEChoosing composite resins, based on optical properties alone, in order to mimic the properties of natural tooth structures, does not necessarily provide a satisfactory esthetic outcome. In many instances, failure ensues from incorrect analysis of the optical behaviors of the natural dentition as well as the improper use of restorative materials. Therefore, it is necessary to implement a technique that enables a restorative material to be utilized to its full potential to correctly replicate the natural teeth.(J Esthet Restor Dent 23:73-88, 2011).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods: Filtek (TM) Z350 nanofilled composite resins and Amelogen (R) Plus, Vit-l-escence (TM) and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light (TM) 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results: The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (Filtek (TM) Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek (TM) Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light (TM) 2). Conclusions: The nanofilled resin showed the lowest DC, and the Vit-l-escence (TM) microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the shrinkage of a microhybrid dental composite resin photo-activated by one LED with different power densities by means of speckle technique. The dental composite resin Filtek (TM) Z-250 (3M/ESPE) at color A(2) was used for the samples preparation. Uncured composite was packed in a metallic mold and irradiated during 20 s from 100 to 1000 mW cm(-2). For the photo-activation of the samples, it was used a LED prototype (Light Emission Diode) with wavelength centered at 470 nm and adjustable power density until 1 W cm(-2). The speckle patterns obtained from the bottom composite surfaces were monitored using a CCD camera without lens. The speckle field is recorded in a digital picture and stored by CCD camera as the carrier of information on the displacement of the tested surface. The calculated values were obtained for each pair of adjacent patterns and the changes in speckle contrast as a function of time were obtained from six repeated measurements. The speckle contrasts obtained from the bottom surface with 100 mW cm(-1) were smaller than those than the other power densities. The higher power densities provided the higher shrinkage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the influence of three light-curing units, storage times and colors of the dental composite resin on the fluorescence. The specimens (diameter 10.0 +/- 0.1 mm, thickness 1.0 +/- 0.1 mm) were made using a stainless steel mold. The mold was filled with the microhybrid composite resin and a polyethylene film covered each side of the mold. After this, a glass slide was placed on the top of the mold. To standardize the top surface of the specimens a circular weight (1 kg) with an orifice to pass the light tip of the LCU was placed on the top surface and photo-activated during 40 s. Five specimens were made for each group. The groups were divided into 9 groups following the LCUs (one QTH and two LEDs), storage times (immediately after curing, 24 hours, 7 and 30 days) and colors (shades: A(2)E, A(2)D, and TC) of the composite resin. After photo-activation, the specimens were storage in artificial saliva during the storage times proposed to each group at 37 C and 100% humidity. The analysis of variance (ANOVA) and Tukey's post-hoc tests showed no significant difference between storage times (immediately, 24 hours and 30 days) (P > 0.05). The means of fluorescence had difference significant to color and light-curing unit used to all period of storage (P < 0.05). The colors had difference significant between them (shades: A2D < A2E < TC) (P < 0.05). The Ultraled (LED) and Ultralux (QTH) when used the TC shade showed higher than Radii (LED), however to A2E shade and A2D shade any difference were found (P > 0.05).