967 resultados para common bile duct cyst
Resumo:
Toxicity of many waterborne organic contaminants to aquatic organisms is mediated through oxidative damages resulting from the production of reactive oxygen species (ROS). Using duroquinone as a model ROS inducer, we carried out in vitro and in vivo experiments to test the hypothesis that reproduction in common carp (Cyprinus carpio) can be impaired through oxidative damage of their spermatozoa. In vitro exposure of fish spermatozoa to 0, 12.5, 25, 50, 100 and 200 mu M duroquinone for 2 h showed a significant increase in the level of ROS in a dose-dependant manner. Sperm motility was significantly reduced in all exposure groups, but lipid peroxidation (LPO) and DNA strand break (measured by comet assay) were only enhanced at 50 mu M and above. A significant decrease in subsequent hatching rate was recorded in all the exposure groups, despite fertilization rate was not affected. In the in vivo experiment, spermatozoa were collected 24 and 72 h after fish received intra-peritoneal injections of 1.0 and 10 mg kg(-1) body weight duroquinone. DNA damage was clearly evident in spermatozoa of all treatment groups after 72 h exposure, and ROS was significantly enhanced in the high concentration group. LPO however, remained unchanged in both treatment groups. The overall results of both our in vitro and in vivo experiments demonstrated that duroquinone can induce ROS production in spermatozoa, which may impair sperm quality and subsequently reproductive success through oxidative stress. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The integration pattern and adjacent host sequences of the inserted pMThGH-transgene in the F4 hGH-transgenic common carp were extensively studied. Here we show that each F4 transgenic fish contained about 200 copies of the pMThGH-transgene and the transgenes were integrated into the host genome generally with concatemers in a head-to-tail arrangement at 4-5 insertion sites. By using a method of plasmid rescue, four hundred copies of transgenes from two individuals of F4 transgenic fish, A and B, were recovered and clarified into 6 classes. All classes of recovered transgenes contained either complete or partial pMThGH sequences. The class I, which comprised 83% and 84.5% respectively of the recovered transgene copies from fish A and B, had maintained the original configuration, indicating that most transgenes were faithfully inherited during the four generations of reproduction. The other five classes were different from the original configuration in both molecular weight and restriction map, indicating that a few transgenes had undergone mutation, rearrangement or deletion during integration and germline transmission. In the five types of aberrant transgenes, three flanking sequences of the host genome were analyzed. These sequences were common carp beta-actin gene, common carp DNA sequences homologous to mouse phosphoglycerate kinase-1 and human epidermal keratin 14, respectively.
Resumo:
A SMART cDNA plasmid library was constructed from protogyous greasy grouper (Epinephelus coioides) pituitary, and the full-length cDNAs of three gonadotropin (GTH) subunits common alpha, FSH beta and LH beta were cloned and sequenced from the library. The nucleotide sequences of common alpha, FSH beta and LH beta subunit cDNAs are 647, 594 and 574 bp in length, and encode for mature peptides of 94, 99 and 115 aa, respectively. High homology was observed by amino acid sequence alignment and identity comparison of the grouper mature peptides of common alpha, FSH beta and LH beta with that of other fishes. Phylogenetic tree analyses of the three GTH mature subunits revealed similar phylogeny relationships among the studied fish species. Three polyclonal antibodies were prepared from the in vitro expressed common alpha, FSH beta and LH beta mature proteins, respectively. Western blot analysis and immunofluoresence localization were performed on two typical stages of ovarian development stages in red-spotted grouper. Significant differences in protein expression levels of three gonadotropin subunits were revealed between the two ovarian development stages. In the individuals with resting ovary, common alpha was almost not detected in pituitaries, and FSH beta and LH beta expression levels were very low. While in the individuals with developing ovary, the expression of all three gonadotropin subunits reached to a high level. Immunofluoresence localization indicated that the grouper FSH beta cells mainly distributed in the middle area of PPD, while the LH beta cells distributed more widely, including in the area similar to the FSH beta cells and at the external periphery of pituitary near to the PI side. The common alpha might be expressed in both FSH beta and LH beta cells. Double immunofluoresence localization further demonstrated FSH beta and LH beta expression in distinct cells in the PPD area, although the FSH beta and LH beta cells were detected in the identical area of PPD. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In previous studies of nuclear transplantation, most cloned animals were obtained by intraspecies nuclear transfer and are phenotypically identical to their nuclear donors; furthermore, there was no further report on successful fish cloning since the report of cloned zebrafish. Here we report the production of seven cross-genus cloned fish by transferring nuclei from transgenic common carp into enucleated eggs of goldfish. Nuclear genomes of the cloned fish were exclusively derived from the nuclear donor species, common carp, whereas the mitochondrial DNA from the donor carp gradually disappeared during the development of nuclear transfer (NT) embryos. The somite development process and somite number of nuclear transplants were consistent with the recipient species, goldfish, rather than the nuclear donor species, common carp. This resulted in a long-lasting effect on the vertebral numbers of the cloned fish, which belonged to the range of goldfish. These demonstrate that fish egg cytoplasm not only can support the development driven by transplanted nuclei from a distantly related species at the genus scale but also can modulate development of the nuclear transplants.
Resumo:
The complete cytochrome b and the control region of mtDNA (about 2070 bp in total) of 10 strains belonging to three subspecies of the common carp, including three wild subspecies (the Yangtze River wild common carp - Cyprinus carpio haematopterus, Yuanjiang River wild common carp Cyprinus carpio rubrofuscus and Volga River wild common carp - Cyprinus carpio carpio) and seven domestic strains (Xingguo red carp, Russian scattered scaled mirror carp, Qingtian carp, Japanese Koi carp, purse red carp, Big-belly carp, German mirror carp) were sequenced. Phylogenetic analysis indicated that the 10 strains form three distinct clades, corresponding to C. c. haematopterus, C. c. rubrofuscus and C. c. carpio respectively. Purse red carp, an endemic domestic strain in Jiangxi province of China, showed a higher evolution rate in comparison with the other strains of C. c. haematopterus, most probably because of intensive selection and a long history of domestication. Base variation ratios among the three subspecies varied from 0.78% (between C. c. haematopterus and C. c. rubrofuscus) to 1.47%(between C. c. carpio and C. c. rubrofuscus). The topography of the phylogenetic tree and the geographic distribution of three subspecies closely resemble each other. The divergence time between C. c. carpio and the other two subspecies was estimated to be about 0.9 Myr and about 0.5 Myr between C. c. haematopterus and C. c. rubrofuscus. Based on phylogenetic analysis, C. c. rubrofuscus might have diverged from C. c. haematopterus.
Resumo:
Five microsatellites were used to study the genetic diversity and genetic structure of one wild and five domestic varieties of common carp in China (the Yangtze River wild common carp, Xingguo red carp, purse red carp, Qingtian carp, Russian scattered scaled mirror carp and Japanese decorative carp). All loci in this study showed marked polymorphism with the number of alleles ranging from 4 to 13. Domestic varieties (except Xingguo red carp) showed less genetic diversity than the Yangtze River wild common carp in terms of allelic diversity. Population differentiation was assessed and each combination of populations displayed significant differentiation (P < 0.05) with the exception of that between the Yangtze River wild common carp and Xingguo red carp. Genetic distance analysis (Nei's standard genetic distance and pairwise F-st distance) showed that the largest distance was between Russian scattered scaled mirror carp and the Yangtze River wild common carp and the smallest distance was between the Yangtze River wild common carp and Xingguo red carp. However, among six populations Japanese decorative carp displayed the highest level of variability in terms of heterozygosity.
Resumo:
Gonadotropin-releasing hormone (GnRH) is a conservative neurodecapeptide family, which plays a crucial role in regulating the gonad development and in controlling the final sexual maturation in vertebrate. Two differing cGnRH-II cDNAs of common carp, namely cGnRH-II cDNA1 and cDNA2, were firstly cloned from the brain by rapid amplification of cDNA end (RACE) and reverse transcription- polymerase chain reaction (RT-PCR). The length of cGnRH-II cDNA1 and cDNA2 was 622 and 578 base pairs (bp), respectively. The cGnRH-II precursors encoded by two cDNAs consisted of 86 amino acids, including a signal peptide, cGnRH-II decapeptide and a GnRH-associated peptide (GAP) linked by a Gly-Lys-Arg proteolytic site. The results of intron trapping and Southern blot showed that two differing cGnRH-II genes in common carp genome were further identified, and that two genes might exist as a single copy. The multi-gene coding of common carp cGnRH-II gene offered novel evidence for gene duplication hypothesis. Using semi-quantitative RT-PCR, expression and relative expression levels of cGnRH-II genes were detected in five dissected brain regions, pituitary and gonad of common carp. With the exception of no mRNA2 in ovary, two cGnRH-II genes could be expressed in all the detected tissues. However, expression levels showed an apparent difference in different brain regions, pituitary and gonad. According to the expression characterization of cGnRH-II genes in brain areas, it was presumed that cGnRH-II might mainly work as the neurotransmitter and neuromodulator and also operate in the regulation for the GnRH releasing. Then, the expression of cGnRH-II genes in pituitary and gonad suggested that cGnRH-II might act as the autocrine or paracrine regulator.
Resumo:
A polyploid hybrid fish with natural gynogenesis can prevent segregation and maintain their hybrid vigor in their progenies. Supposing the reproduction mode of induced polyploid fish being natural gynogenesis, allopolyploid hybrid between common carp and crucian carp into allopolyploid was performed. The purpose of this paper is to describe a lineage from sexual diploid carp transforming into allotriploid and allotetraploid unisexual clones by genome addition. The diploid hybrid between common carp and crucian carp reproduces an unreduced nucleus consisting of two parental genomes. This unreduced female pronucleus will fuse with male pronucleus and form allotriploid zygote after penetration of related species sperms. Allotriploid embryos grow normally, and part of female allotriploid can produce unreduced mature ova with three genomes. Mature ova of most allotriploid females are provided with natural gynogenetic trait and their nuclei do not fuse with any entrance sperm. All female offspring are produced by gynogenesis of allotriploid egg under activation of penetrating sperms. These offspring maintain morphological traits of their allotriploid maternal and form an allotetraploid unisexual clone by gynogenetic reproduction mode. However, female nuclei of rare allotriploid female can fuse with penetrating male pronuclei and result in the appearance of allotetraploid individuals by means of genome addition. All allotetraploid females can reproduce unreduced mature eggs containing four genomes. Therefore, mature eggs of allotetraploid maintain gynogenetic trait and allotetraploid unisexual clone is produced under activation of related species sperms.
Resumo:
The first successful case of transgenic fish was achieved in 1984. It is in a model system that the integration and expression of recombinant human growth hormone (hGH) in host red common carp (Cyprinus carpio, red var.) have been thoroughly studied. Recently, the integration sites have been recovered and characterized. Compared with non-transgenic peers, hGH-transgenic fish are prior in dietary utilization and growth performance. In view of bio-safety and bio-ethics, an "all-fish" construct CAgcGH, grass carp growth hormone fused with common carp P-actin promoter, has been generated and transferred into Yellow River carp (C carpio, local strain in Yellow River) fertilized eggs. Under middle-scale trial, CAgcGH-transgenics show higher growth rate and food conversion efficiency than the controls, which is consistent to laboratory findings. To avoid the potential impact of transgenic fish on the environment, a sterile strain of transgenic triploid fish has been successfully produced. The "all-fish" transgenic common carp is also approved safe enough as daily food, according to a test based on the pathological principles of new medicines issued by the Ministry of Health of China. The "all-fish" transgenic common carp with growth enhancement is now ready for market, but looking for governmental authorization. (C) 2003 Editions scientifiques et medicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved.
Resumo:
The transgenic carp were produced by micro-injection of CAgcGHc into the fertilized eggs. Observation of the thymus development between the transgenics and non-transgenic controls was carried out. The thymus of one-year-old transgenics F1 showed a great increase in both size and weight. The unilateral thymus of the transgenics weighed from 190 to 295 mg with average 218.6 mg, whereas the unilateral thymus of the controls weighed 20-81 mg with average 42.5 mg; i.e. the thymus weight in the transgenics was 5.14 fold over that in the controls. The index of thymus/body weight in the transgenics was 2.97 fold over the controls. Light microscopy observation indicated that the thymus of the transgenics; well developed with the thickened outer region and compactly arranged thymocytes, while the thymus in the controls were degenerating with the thinned outer region, scattered thymocytes and groups of fatty cells. Further analysis with the electron microscopy revealed that pro-liferous cells in the transgenics; were mainly small lymphocytes and no pathological changes were found. The results confirmed that the "All-fish" GH-transgene promotes thymus development and thymocyte proliferation, and retards thymus degeneration. The study has laid a foundation for further analysis of the immunobiological function in GH-transgenic carp.
Resumo:
The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Mitochondrial DNA ND5/6 region was studied by PCR-RFLP analysis among ten representative strains belonging to three subspecies (Cyprinus carpio carpio, Cyprinus carpio haematopterus and Cyprinus carpio rubrofuscus) of common carp (Cyprinus carpio L.). A total of 2.4 kb fragment was amplified and subjected to restriction endonuclease analysis with nine restriction endonucleases subsequently. The results indicated that each subspecies owned one hyplotype and four restriction enzymes (Dde I, HaeIII, Taq I and Mbo I) produced diagnostic restriction sites which could be used for discriminating the three subspecies and as molecular genetic markers for assistant selective breeding of common carp.
Resumo:
About a third of microsatellite primers designed for common carp (Cyprinus carpio) was successfully amplified in silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). These markers, inherited in Mendelian mode, are of potential applications in cypinid genetics.
Resumo:
Full-length and partial genome sequences of four members of the genus Aquareovirus, family Reoviridae (Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus) were characterized. Based on sequence comparison, the unclassified Grass carp reovirus was shown to be a member of the species Aquareovirus C The status of golden ide reovirus, another unclassified aquareovirus, was also examined. Sequence analysis showed that it did not belong to the species Aquareovirus A or C, but assessment of its relationship to the species Aquareovirus B, D, E and F was hampered by the absence of genetic data from these species. In agreement with previous reports of ultrastructural resemblance between aquareoviruses and orthoreoviruses, genetic analysis revealed homology in the genes of the two groups. This homology concerned eight of the 11 segments of the aquareovirus genome (amino acid identity 17-42%), and similar genetic organization was observed in two other segments. The conserved terminal sequences in the genomes of members of the two groups were also similar. These data are undoubtedly an indication of the common evolutionary origin of these viruses. This clear genetic relatedness between members of distinct genera is unique within the family Reoviridae. Such a genetic relationship is usually observed between members of a single genus. However, the current taxonomic classification of aquareoviruses and orthoreoviruses in two different genera is supported by a number of characteristics, including their distinct G+C contents, unequal numbers of genome segments, absence of an antigenic relationship, different cytopathic effects and specific econiches.