995 resultados para color appearance models
Resumo:
Although cryptococcal infections begin in the lungs, meningoencephalitis is the most frequently encountered manifestation of cryptococcosis among individuals with advanced immunosuppression. As the infection progresses along the Virchow-Robin spaces, these structures may become dilated with mucoid material produced by the capsule of the organism. We report a case of a 24-year-old man with cryptococcal meningoencephalitis in which magnetic resonance imaging showed clusters of gelatinous pseudocysts in the periventricular white matter, basal ganglia, mammillary bodies, midbrain peduncles and nucleus dentatus with a soap bubble appearance.
Resumo:
This research is titled “The Future of Airline Business Models: Which Will Win?” and it is part of the requirements for the award of a Masters in Management from NOVA BSE and another from Luiss Guido Carlo University. The purpose is to elaborate a complete market analysis of the European Air Transportation Industry in order to predict which Airlines, strategies and business models may be successful in the next years. First, an extensive literature review of the business model concept has been done. Then, a detailed overview of the main European Airlines and the strategies that they have been implementing so far has been developed. Finally, the research is illustrated with three case studies
Resumo:
Introduction This study aimed to analyze the relationship between the incidence of severe dengue during the 2008 epidemic in Rio de Janeiro, Brazil, and socioeconomic indicators, as well as indicators of health service availability and previous circulation of the dengue virus serotype-3 (DENV-3). Methods In this ecological study, the units of analysis were the districts of Rio de Janeiro. The data were incorporated into generalized linear models, and the incidence of severe dengue in each district was the outcome variable. Results The districts with more cases of dengue fever in the 2001 epidemic and a higher percentage of residents who declared their skin color or race as black had higher incidence rates of severe dengue in the 2008 epidemic [incidence rate ratio (IRR)= 1.21; 95% confidence interval (95%CI)= 1.05-1.40 and IRR= 1.34; 95%CI= 1.16-1.54, respectively]. In contrast, the districts with Family Health Strategy (FHS) clinics were more likely to have lower incidence rates of severe dengue in the 2008 epidemic (IRR= 0.81; 95%CI= 0.70-0.93). Conclusions At the ecological level, our findings suggest the persistence of health inequalities in this region of Brazil that are possibly due to greater social vulnerability among the self-declared black population. Additionally, the protective effect of FHS clinics may be due to the ease of access to other levels of care in the health system or to a reduced vulnerability to dengue transmission that is afforded by local practices to promote health.
Resumo:
Contém resumo
Resumo:
The objective of this study was to differentiate benign ovarian tumors from malignant ones before surgery using color and pulsed Doppler sonography, and to compare results obtained before and after use of contrast medium, thereby verifying whether contrast results in an improvement in the diagnostic sensitivity. METHODS: Sixty two women (mean age 49.9 years) with ovarian tumors were studied, 45 with benign and 17 with malignant tumors. All women underwent a transvaginal color Doppler ultrasonographic exam. A study of the arterial vascular flow was made in all tumor areas, as well as an impedance evaluation of arterial vascular flow using the resistance index. RESULT: Localization of the vessels in the tumor revealed a greater proportion of malignant tumors with detectable internal vascular flows (64%) than benign tumors with such flows (22%). There was a considerable overlap of these findings. The use of contrast identified a greater number of vessels with confirmation in the totality of tumors, but did not improve the Doppler capacity in tumoral differentiation. Malignant tumors presented lower values of resistance index than the benign ones, whether or not contrast was used. The cutoff value for resistance index that better maximized the Doppler sensitivity and specificity was 0.55. Through this value, an increase of the sensitivity after contrast use was obtained, varying from 47% to 82%, while specificity remained statistically unchanged. CONCLUSION: Although the injection of a microbubble agent improved the sensitivity of the method detecting vascularization of tumors, a positive finding for vascularization by this method was not clinically useful in the differentiation of benign and malignant ovarian tumors.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
Field lab: Business project
Resumo:
We intend to study the algebraic structure of the simple orthogonal models to use them, through binary operations as building blocks in the construction of more complex orthogonal models. We start by presenting some matrix results considering Commutative Jordan Algebras of symmetric matrices, CJAs. Next, we use these results to study the algebraic structure of orthogonal models, obtained by crossing and nesting simpler ones. Then, we study the normal models with OBS, which can also be orthogonal models. We intend to study normal models with OBS (Orthogonal Block Structure), NOBS (Normal Orthogonal Block Structure), obtaining condition for having complete and suffcient statistics, having UMVUE, is unbiased estimators with minimal covariance matrices whatever the variance components. Lastly, see ([Pereira et al. (2014)]), we study the algebraic structure of orthogonal models, mixed models whose variance covariance matrices are all positive semi definite, linear combinations of known orthogonal pairwise orthogonal projection matrices, OPOPM, and whose least square estimators, LSE, of estimable vectors are best linear unbiased estimator, BLUE, whatever the variance components, so they are uniformly BLUE, UBLUE. From the results of the algebraic structure we will get explicit expressions for the LSE of these models.
Resumo:
Both culture coverage and digital journalism are contemporary phenomena that have undergone several transformations within a short period of time. Whenever the media enters a period of uncertainty such as the present one, there is an attempt to innovate in order to seek sustainability, skip the crisis or find a new public. This indicates that there are new trends to be understood and explored, i.e., how are media innovating in a digital environment? Not only does the professional debate about the future of journalism justify the need to explore the issue, but so do the academic approaches to cultural journalism. However, none of the studies so far have considered innovation as a motto or driver and tried to explain how the media are covering culture, achieving sustainability and engaging with the readers in a digital environment. This research examines how European media which specialize in culture or have an important cultural section are innovating in a digital environment. Specifically, we see how these innovation strategies are being taken in relation to the approach to culture and dominant cultural areas, editorial models, the use of digital tools for telling stories, overall brand positioning and extensions, engagement with the public and business models. We conducted a mixed methods study combining case studies of four media projects, which integrates qualitative web features and content analysis, with quantitative web content analysis. Two major general-interest journalistic brands which started as physical newspapers – The Guardian (London, UK) and Público (Lisbon, Portugal) – a magazine specialized in international affairs, culture and design – Monocle (London, UK) – and a native digital media project that was launched by a cultural organization – Notodo, by La Fábrica – were the four case studies chosen. Findings suggest, on one hand, that we are witnessing a paradigm shift in culture coverage in a digital environment, challenging traditional boundaries related to cultural themes and scope, angles, genres, content format and delivery, engagement and business models. Innovation in the four case studies lies especially along the product dimensions (format and content), brand positioning and process (business model and ways to engage with users). On the other hand, there are still perennial values that are crucial to innovation and sustainability, such as commitment to journalism, consistency (to the reader, to brand extensions and to the advertiser), intelligent differentiation and the capability of knowing what innovation means and how it can be applied, since this thesis also confirms that one formula doesn´t suit all. Changing minds, exceeding cultural inertia and optimizing the memory of the websites, looking at them as living, organic bodies, which continuously interact with the readers in many different ways, and not as a closed collection of articles, are still the main challenges for some media.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
This work project is based on the MIES (Map of Innovation and Social Entrepreneurship in Portugal) database and it aims to understand the characteristics of social business models in the context of the portuguese market, by determining whether they follow the proposed characteristics by John Elkington and Pamela Hartigan, and then adding to their matrix. Furthermore, it tries to determine success patterns by comparing a group of successful social ventures with a group of less successful ones, with the objective of increasing the knowledge of social entrepreneurship as it applies to Portugal and provide a framework for future study.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Resumo:
Nowadays the main honey producing countries require accurate labeling of honey before commercialization, including floral classification. Traditionally, this classification is made by melissopalynology analysis, an accurate but time-consuming task requiring laborious sample pre-treatment and high-skilled technicians. In this work the potential use of a potentiometric electronic tongue for pollinic assessment is evaluated, using monofloral and polyfloral honeys. The results showed that after splitting honeys according to color (white, amber and dark), the novel methodology enabled quantifying the relative percentage of the main pollens (Castanea sp., Echium sp., Erica sp., Eucaliptus sp., Lavandula sp., Prunus sp., Rubus sp. and Trifolium sp.). Multiple linear regression models were established for each type of pollen, based on the best sensors sub-sets selected using the simulated annealing algorithm. To minimize the overfitting risk, a repeated K-fold cross-validation procedure was implemented, ensuring that at least 10-20% of the honeys were used for internal validation. With this approach, a minimum average determination coefficient of 0.91 ± 0.15 was obtained. Also, the proposed technique enabled the correct classification of 92% and 100% of monofloral and polyfloral honeys, respectively. The quite satisfactory performance of the novel procedure for quantifying the relative pollen frequency may envisage its applicability for honey labeling and geographical origin identification. Nevertheless, this approach is not a full alternative to the traditional melissopalynologic analysis; it may be seen as a practical complementary tool for preliminary honey floral classification, leaving only problematic cases for pollinic evaluation.
Resumo:
Developing and implementing data-oriented workflows for data migration processes are complex tasks involving several problems related to the integration of data coming from different schemas. Usually, they involve very specific requirements - every process is almost unique. Having a way to abstract their representation will help us to better understand and validate them with business users, which is a crucial step for requirements validation. In this demo we present an approach that provides a way to enrich incrementally conceptual models in order to support an automatic way for producing their correspondent physical implementation. In this demo we will show how B2K (Business to Kettle) system works transforming BPMN 2.0 conceptual models into Kettle data-integration executable processes, approaching the most relevant aspects related to model design and enrichment, model to system transformation, and system execution.
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.