997 resultados para climatic environment
Resumo:
OBJECTIVE: This study examined the respective roles of personal and environmental factors in youth violence in a nationally representative sample of 7548 postmandatory school students and apprentices ages 16-20 years in Switzerland. METHODS: Youth violence was defined as having committed at least one of the following in the previous 12 months: attacking an adult, snatching something, carrying a weapon, or using a weapon in a fight. Different ecological levels were tested, resulting in a three-level model only in males (individual, classroom, and school) as the low prevalence of female violence did not allow for a multilevel analysis. Dependent variables were attributed to each level. For males, the classroom level (10%) and the school level (24%) accounted for more than one third in interindividual variance. RESULTS: Factors associated with violence perpetration in females were being a victim of physical violence and sensation seeking at the individual level. In males, practicing unsafe sex, sensation seeking, being a victim of physical violence, having a poor relationship with parents, being depressed, and living in a single-parent household at the individual level; violence and antisocial acts at the classroom level; and being in a vocational school at the school level showed a correlation with violence perpetration. CONCLUSION: Interventions at the classroom level as well as an explicit school policy on violence and other risk behaviors should be considered a priority when dealing with the problem of youth violence. Furthermore, prevention should take into account gender differences.
Resumo:
Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and averagelatitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northerndistributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts
Resumo:
According to Jenkyns (2010), oceanic anoxic events (OAE) record profound changes in the climatic and paleoceanographic state of the planet and represent major disturbances in the global carbon cycle. One of the most studied OAEs on a worldwide scale is the Cenomanian-Turonian OAE 2, which is characterized by a pronounced positive excursion in carbon-isotope records and the important accumulation of organic-rich sediments. The section at Gongzha (Tibet) and the sections at Barranca and Axaxacualco (Mexico) are located in remote parts of the Tethys, and show δ13C records, which are well correlated with those of classical Tethyan sections. Both sections, however, do not exhibit the presence of organic-rich sediments. Phosphorus Mass Accumulation Rates (PMAR) in Tibet show a pattern similar to that observed in the Tethys by Mort et al. (2007), which suggests enhanced Ρ regeneration during the OAE 2 time interval, though there is no evidence for anoxic conditions in Tibet. Ρ appears here to have been mainly driven by detrital influx and sea-level fluctuations. The sections at Barranca and Axaxacualco show that the Mexican carbonate platform persisted during this anoxic event, which allowed the evolution of platform fauna otherwise not present in Tethyan sections. The persistence of this carbonate platform close to the Caribbean Igneous Plateau, which is thought to have released bio-limiting metals, is explained by local uplift which delayed the drowning of the platform and a specific oceanic circulation that permitted the preservation of oligotrophic conditions in the area. The Coniacian-Santonian OAE (OAE3) appears to have been more dependent on local conditions than OAE2. The presence of black shales associated with OAE3 appear to have been restricted to shallow-water settings and epicontinental seas in areas located around the Atlantic Ocean. The sections at Olazagutia (Spain), and Ten Mile - Arbor Park (USA), two potential Global Boundary Stratotype Sections and Points (GSSP) sites, are devoid of organic-rich sediments and lack a δ13C positive excursion around the C-S boundary. The Gabal Ekma section (Sinai, Egypt) exhibits accumulations of organic-rich sediments, in addition to phosphorite bone beds layers, which may have been linked to an epicontinental upwelling zone and/or storm inputs. Our data suggest that OAE 3 is rarely expressed by truly anoxic conditions and seems to have been linked to local conditions rather than global paleoenvironmental change. The evidence for detrital-P being the likely cause of Ρ fluctuations during the OAEs studied here does not negate the idea that anoxia was the principal driver of these fluctuations in the western Tethys. However, an explanation is required as to why the Ρ accumulation signatures are mirrored in both oxic and anoxic sedimentary successions. 'Eustatic/climatic' and 'productivity/anoxic' models may have both operated simultaneously in different parts of the world depending on local conditions, both producing similar trends in Ρ accumulation. - Selon Jenkyns (2010), les événements anoxiques océaniques enregistrent de profonds changements dans le climat et la paléoceanographie de la planète et représente des perturbations majeures du cycle du carbone. L'un des plus étudiés à l'échelle mondiale est l'ΟΑΕ2 du Cénomanien-Turonien, qui est caractérisé par une très forte excursion positive des isotopes du carbone et une importante accumulation de sédiments riche en matière organique. La section de Gongzha (Tibet) et les sections de Barranca et Axaxcualco (Mexique) sont situées aux confins de la Téthys, et enregistrent une courbe isotopique en δ13C parfaitement corrélable avec les sections téthysiennes, mais ne montre pas d'accumulation de black shales. Le taux de phosphore en accumulation de masses (PMAR) au Tibet montre un pattern similaire observé également par Mort et al. (2007) dans la Téthys, suggérant un model de régénération du Ρ durant l'anoxie, cependant aucune conditions anoxiques régnent dans la région du Tibet. Ρ apparaît donc principalement guidé par le détritisme et les fluctuations du niveau marin. Les sections de Barranca et d'Axaxacualco montrent que la plateforme carbonatée mexicaine persiste durant cet événement anoxique, et permet le développement d'une faune de plateforme qui n'est pas présente dans les sections téthysiennes. La persistance de cette plateforme carbonatée si proche du plateau Caribéen, qui est connu pour le relâchement de métaux bio-limitant, peut être expliqué par un soulèvement tectonique local qui inhibe l'ennoiement de la plateforme et une circulation océanique spécifique qui permet la préservation de conditions oligotrophiques dans cette région. L'événement anoxique océanique du Coniacien-Santonien apparaît plus dépendant des conditions locales que pour l'ΟΑΕ2. Les black shales associés à POAE3 sont restreints aux zones situées autour de l'océan Atlantique et plus particulièrement aux eaux peu profondes et épicontinentales. Les sections d'Olazagutia (Espagne), Ten Mile Creek et Arbor Park (USA), qui sont deux potentielles sections GSSP (Sections de stratotype de limite globaux et de points), ne montre pas d'accumulation de black shales et pas de forte excursion positive en δ13C autour de la limite C-S. La section de Gabal Ekma (Sinai, Egypte) montre des accumulations de black shales, en plus des couches de phosphorites et d'accumulation d'os (« bone beds »), vraisemblablement lié à des zones active d'upwelling épicontinentale et/ou d'apport de tempêtes. Nos données suggèrent que l'OAE 3 est rarement exprimé par de vraies conditions anoxiques et semble être plus lié à des conditions plus locales que des changements paléo-environnementaux globaux, comme observés pour le Cénomanien- Turonien. Les arguments pour un modèle lié au phosphore détritique qui serait la cause des fluctuations du phosphore total durant les OAEs, n'écartent pas l'idée que l'anoxie est la principale cause de ces fluctuations dans les sections riches en matière organique de l'Ouest téthysien. Cependant une explication est nécessaire pour comprendre pourquoi la signature de l'accumulation du phosphore est semblable dans les successions sédimentaires déposées dans des conditions oxygénées et anoxiques. Les modèles « Eustatisme/Climat » et « Productivité/anoxie » ont simultanément opéré dans les différentes parties du monde dépendant de conditions locales, et ont produit des tendances similaires en accumulation de phosphore.
Resumo:
Aim Identifying climatic niche shifts and their drivers is important to accurately predict the risk of biological invasions. The niches of non-native plants and birds have recently been assessed in large-scale multi-species studies, but such large-scale tests are lacking for non-native reptiles and amphibians (herpetofauna). Furthermore, little is known about the factors contributing to niche shifts when they occur. Based on the occurrence of 71 reptile and amphibian species, we compared native and non-native realized niches in 101 invaded ranges at a worldwide scale and identified the factors that affect niche shifts. Location The world except the Antarctic. Methods We assessed climatic niche dynamics in a gridded environmental space allowing the quantification of niche overlap and expansion into climatic conditions not colonized by the species in their native range. We analyzed the factors affecting niche shifts using a model averaging approach based on generalized linear mixed-effects models. Results Approximately 57% of the invaded ranges (51% for amphibians and 61% for reptiles) showed niche shifts (≥10% expansion in the realized climatic niche). Island endemics, species introduced to Oceania and invaded ranges outside the native biogeographic realm showed a higher proportion of niche shifts. Niche shifts were more likely for species that had smaller native range sizes, were introduced earlier into a new range or invaded areas located at lower latitudes than the native range. Main conclusions The proportion of niche shifts for non-native herpetofauna was higher than those for Holarctic non-native plants and European non-native birds. The 'climate matching hypothesis' should be used with caution for species shifting their niche because it could underestimate the risk of their establishment.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
BACKGROUND AND AIMS: The genus Olea (Oleaceae) includes approx. 40 taxa of evergreen shrubs and trees classified in three subgenera, Olea, Paniculatae and Tetrapilus, the first of which has two sections (Olea and Ligustroides). Olive trees (the O. europaea complex) have been the subject of intensive research, whereas little is known about the phylogenetic relationships among the other species. To clarify the biogeographical history of this group, a molecular analysis of Olea and related genera of Oleaceae is thus necessary. METHODS: A phylogeny was built of Olea and related genera based on sequences of the nuclear ribosomal internal transcribed spacer-1 and four plastid regions. Lineage divergence and the evolution of abaxial peltate scales, the latter character linked to drought adaptation, were dated using a Bayesian method. KEY RESULTS: Olea is polyphyletic, with O. ambrensis and subgenus Tetrapilus not sharing a most recent common ancestor with the main Olea clade. Partial incongruence between nuclear and plastid phylogenetic reconstructions suggests a reticulation process in the evolution of subgenus Olea. Estimates of divergence times for major groups of Olea during the Tertiary were obtained. CONCLUSIONS: This study indicates the necessity of revising current taxonomic boundaries in Olea. The results also suggest that main lines of evolution were promoted by major Tertiary climatic shifts: (1) the split between subgenera Olea and Paniculatae appears to have taken place at the Miocene-Oligocene boundary; (2) the separation of sections Ligustroides and Olea may have occurred during the Early Miocene following the Mi-1 glaciation; and (3) the diversification within these sections (and the origin of dense abaxial indumentum in section Olea) was concomitant with the aridification of Africa in the Late Miocene.
Resumo:
In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.
Resumo:
The objective of this work was to investigate the genotype-environment interaction in Mato Grosso State, MT. The relative importance of locations, years, sowing dates and cultivars and their interactions was analyzed from data collected in regional yield trials performed in a randomized complete block design with four replications, from 1994-1995 through 1999-2000, in nine locations and two sowing dates. Individual and pooled analyses of variance over years and locations were performed. Complementary analyses of variances partitioned MT State in two main and five smaller regions, respectively: North and South of Cuiabá; and MT-South-A (Pedra Preta area), MT-South-B (Rondonópolis and Itiquira), MT-East (Primavera do Leste and Campo Verde), MT-Central (Nova Mutum, Lucas do Rio Verde and Sorriso) and MT-Parecis (Campo Novo dos Parecis and Sapezal). Locations are relatively more important than years for yield testing soybeans in the MT State, therefore, investment should be made in increasing locations rather than years to improve experimental precision. Partitioning the MT State into regions has little impact on soybean yield testing results and, consequently, on the efficiency of the soybean breeding program in the State. Breeding genotypes with broad adaptation for the MT State is an efficient strategy for cultivar development.
The path: sustainable development in conjunction with meeting the demands of a changing environment.
Resumo:
In the context of severe economic recession, the Library is compelled to adapt to this changing environment, in order to meet the requirements and demands of users with very specific needs. Taking the pillars of sustainable development as a reference point, and extrapolating them to our domain, we establish the next main goals
Resumo:
PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.
Resumo:
Summary : Four distinct olfactory subsystems compose the mouse olfactory system, the main olfactory epithelium (MOE), the septal organ of Masera (SO), the vomeronasal organ (VNO) and the Grueneberg ganglion (GG). They are implicated in the sensory modalities of the animal and they evolved to analyse and discriminate molecules carrying chemical messages, such as odorants and pheromones. In this thesis, the VNO, principally implicated in pheromonal communications as well as the GG, which had no function attributed until this work, were investigated from their morphology to their physiological functions, using an array of biochemical and physiological methods. First, the roles of a particular protein, the CNGA4 ion channel, were investigated in the VNO. In the MOE, CNGA4 is expressed as a modulatory channel subunit implicated in odour discrimination and adaptation. Interestingly, this calcium channel is the unique member of the cyclic nucleotide-gated (CNG) family to be expressed in the VNO and up to this work its functions remained unknown. Using a combination of transgenic and knockout mice, as well as histological and physiological approaches, we have characterized CNGA4 expression in the VNO. A strong expression in immature neurons was found as well as in the microvilli of mature neurons (putative site of chemodetection). Interestingly and confirming its dual localisation, the genetic invalidation of the CNGA4 channel has, as consequences, a strong impairment in vomeronasal maturation as well as deficit in pheromone sensing. Thus the CNGA4 channel appears to be a multifunctional protein in the mouse VNO playing essential role(s) in this organ. During the second part of the work, the morphology of the most recently described olfactory subsystem, the Grueneberg ganglion, was investigated in detail. Interestingly we found that glial cells and ciliated neurons compose this olfactory ganglion. This particular morphological aspect was similar to the olfactory AWC neurons from C. elegans which was used for further comparisons. Thus as for AWC neurons, we found that GG neurons are sensitive to temperature changes and are able to detect highly volatile molecules. Indeed, the presence of alarm pheromones (APs) secreted by stressed mice, elicit strong cellular responses, as well as a GG dependent behavioural changes. Investigations on the signaling elements present in GG neurons revealed that, as for AWC neurons, or pGC-D expressing neurons from the MOE, proteins participating in a cGMP pathway were found in GG neurons such as pGC-G and CNGA3 channels. These two proteins might be implicated in chemosensing as well as in thermosensing, two apparent properties of this organ. In this thesis, the multisensory modalities of two mouse olfactory subsystems were described and are related to a high degree of complexity required for the animal to sense its environment