990 resultados para climate trend
Resumo:
Analysis of climate change impacts on streamflow by perturbing the climate inputs has been a concern for many authors in the past few years, but there are few analyses for the impacts on water quality. To examine the impact of change in climate variables on the water quality parameters, the water quality input variables have to be perturbed. The primary input variables that can be considered for such an analysis are streamflow and water temperature, which are affected by changes in precipitation and air temperature, respectively. Using hypothetical scenarios to represent both greenhouse warming and streamflow changes, the sensitivity of the water quality parameters has been evaluated under conditions of altered river flow and river temperature in this article. Historical data analysis of hydroclimatic variables is carried out, which includes flow duration exceedance percentage (e.g. Q90), single low- flow indices (e.g. 7Q10, 30Q10) and relationships between climatic variables and surface variables. For the study region of Tunga-Bhadra river in India, low flows are found to be decreasing and water temperatures are found to be increasing. As a result, there is a reduction in dissolved oxygen (DO) levels found in recent years. Water quality responses of six hypothetical climate change scenarios were simulated by the water quality model, QUAL2K. A simple linear regression relation between air and water temperature is used to generate the scenarios for river water temperature. The results suggest that all the hypothetical climate change scenarios would cause impairment in water quality. It was found that there is a significant decrease in DO levels due to the impact of climate change on temperature and flows, even when the discharges were at safe permissible levels set by pollution control agencies (PCAs). The necessity to improve the standards of PCA and develop adaptation policies for the dischargers to account for climate change is examined through a fuzzy waste load allocation model developed earlier. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
The changes in seasonal snow covered area in the Hindu Kush-Himalayan (HKH) region have been examined using Moderate – resolution Imaging Spectroradiometer (MODIS) 8-day standard snow products. The average snow covered area of the HKH region based on satellite data from 2000 to 2010 is 0.76 million km2 which is 18.23% of the total geographical area of the region. The linear trend in annual snow cover from 2000 to 2010 is −1.25±1.13%. This is in consistent with earlier reported decline of the decade from 1990 to 2001. A similar trend for western, central and eastern HKH region is 8.55±1.70%, +1.66% ± 2.26% and 0.82±2.50%, respectively. The snow covered area in spring for HKH region indicates a declining trend (−1.04±0.97%). The amount of annual snowfall is correlated with annual seasonal snow cover for the western Himalaya, indicating that changes in snow cover are primarily due to interannual variations in circulation patterns. Snow cover trends over a decade were also found to vary across seasonally and the region. Snow cover trends for western HKH are positive for all seasons. In central HKH the trend is positive (+15.53±5.69%) in autumn and negative (−03.68±3.01) in winter. In eastern HKH the trend is positive in summer (+3.35±1.62%) and autumn (+7.74±5.84%). The eastern and western region of HKH has an increasing trend of 10% to 12%, while the central region has a declining trend of 12% to 14% in the decade between 2000 and 2010. Snow cover depletion curve plotted for the hydrological year 2000–2001 reveal peaks in the month of February with subsidiary peaks observed in November and December in all three regions of the HKH.
Resumo:
All major rivers in Bhutan depend on snowmelt for discharge. Therefore, changes in snow cover due to climate change can influence distribution and availability of water. However, information about distribution of seasonal snow cover in Bhutan is not available. The MODIS snow product was used to study snow cover status and trends in Bhutan. Average snow cover area (SCA) of Bhutan estimated for the period 2002 to 2010 was 9030 sq. km, about 25.5% of the total land area. SCA trend of Bhutan for the period 2002-2010 was found to decrease (-3.27 +/- 1.28%). The average SCA for winter was 14,485 sq. km (37.7%), for spring 7411 sq. km (19.3%), for summer 4326 sq. km (11.2%), and for autumn 7788 sq. km (20.2%), mostly distributed in the elevation range 2500-6000 m amsl. Interannual and seasonal SCA trend both showed a decline, although it was not statistically significant for all sub-basins. Pho Chu sub-basin with 19.5% of the total average SCA had the highest average SCA. The rate of increase of SCA for every 100 m elevation was the highest (2.5%) in the Pa Chu sub-basin. The coefficient of variance of 1.27 indicates high variability of SCA in winter.
Resumo:
Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian region. I present a review of the current state of knowledge of aerosol chemistry in India and propose future directions.
Resumo:
A two-stage methodology is developed to obtain future projections of daily relative humidity in a river basin for climate change scenarios. In the first stage, Support Vector Machine (SVM) models are developed to downscale nine sets of predictor variables (large-scale atmospheric variables) for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) (A1B, A2, B1, and COMMIT) to R (H) in a river basin at monthly scale. Uncertainty in the future projections of R (H) is studied for combinations of SRES scenarios, and predictors selected. Subsequently, in the second stage, the monthly sequences of R (H) are disaggregated to daily scale using k-nearest neighbor method. The effectiveness of the developed methodology is demonstrated through application to the catchment of Malaprabha reservoir in India. For downscaling, the probable predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis data set for the period 1978-2000 and (2) simulations of the third-generation Canadian Coupled Global Climate Model for the period 1978-2100. The performance of the downscaling and disaggregation models is evaluated by split sample validation. Results show that among the SVM models, the model developed using predictors pertaining to only land location performed better. The R (H) is projected to increase in the future for A1B and A2 scenarios, while no trend is discerned for B1 and COMMIT.
Resumo:
The solar radiation flux at the earth's surface has gone through decadal changes of decreasing and increasing trends over the globe. These phenomena known as dimming and brightening, respectively, have attracted the scientific interest in relation to the changes in radiative balance and climate. Despite the interest in the solar dimming/brightening phenomenon in various parts of the world, south Asia has not attracted great scientific attention so far. The present work uses the net downward shortwave radiation (NDSWR) values derived from satellites (Modern Era Retrospective-analysis for Research and Applications, MERRA 2D) in order to examine the multi-decadal variations in the incoming solar radiation over south Asia for the period of 1979-2004. From the analysis it is seen that solar dimming continues over south Asia with a trend of -0.54 Wm(-2) yr(-1). Assuming clear skies an average decrease of -0.05 Wm(-2)yr(-1) in NDSWR was observed, which is attributed to increased aerosol emissions over the region. There is evidence that the increase in cloud optical depth plays the major role for the solar dimming over the area. The cloud optical depth (MERRA retrievals) has increased by 10.7% during the study period, with the largest increase to be detected for the high-level (atmospheric pressure P < 400 hPa) clouds (31.2%). Nevertheless, the decrease in solar radiation and the role of aerosols and clouds exhibit large monthly and seasonal variations directly affected by the local monsoon system, the anthropogenic and natural aerosol emissions. All these aspects are examined in detail aiming at shedding light into the solar dimming phenomenon over a densely populated area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A modeling framework is presented in this paper, integrating hydrologic scenarios projected from a General Circulation Model (GCM) with a water quality simulation model to quantify the future expected risk. Statistical downscaling with a Canonical Correlation Analysis (CCA) is carried out to develop the future scenarios of hydro-climate variables starting with simulations provided by a GCM. A Multiple Logistic Regression (MLR) is used to quantify the risk of Low Water Quality (LWQ) corresponding to a threshold quality level, by considering the streamflow and water temperature as explanatory variables. An Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) presented in an earlier study is then used to develop adaptive policies to address the projected water quality risks. Application of the proposed methodology is demonstrated with the case study of Tunga-Bhadra river in India. The results showed that the projected changes in the hydro-climate variables tend to diminish DO levels, thus increasing the future risk levels of LWQ. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.