571 resultados para classifiers
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.
Resumo:
Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower. While these biases are intrinsic to the species, their characterization can lead to computational approaches capable of diminishing their negative effect on the accuracy of pre-miRNAs predictive models. We investigate in this study how 45 predictive models induced for data sets from 45 species, distributed in eight subphyla/classes, perform when applied to a species different from the species used in its induction. Results: Our computational experiments show that the separability of pre-miRNAs and pseudo pre-miRNAs instances is species-dependent and no feature set performs well for all species, even within the same subphylum/class. Mitigating this species dependency, we show that an ensemble of classifiers reduced the classification errors for all 45 species. As the ensemble members were obtained using meaningful, and yet computationally viable feature sets, the ensembles also have a lower computational cost than individual classifiers that rely on energy stability parameters, which are of prohibitive computational cost in large scale applications. Conclusion: In this study, the combination of multiple pre-miRNAs feature sets and multiple learning biases enhanced the predictive accuracy of pre-miRNAs classifiers of 45 species. This is certainly a promising approach to be incorporated in miRNA discovery tools towards more accurate and less species-dependent tools.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment (“relaxation” vs. “stress”) are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the “relaxation” vs. “stress” states.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
Support Vector Machines (SVMs) are widely used classifiers for detecting physiological patterns in Human-Computer Interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the application of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables, and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.
Resumo:
The growth of social networking platforms has drawn a lot of attentions to the need for social computing. Social computing utilises human insights for computational tasks as well as design of systems that support social behaviours and interactions. One of the key aspects of social computing is the ability to attribute responsibility such as blame or praise to social events. This ability helps an intelligent entity account and understand other intelligent entities’ social behaviours, and enriches both the social functionalities and cognitive aspects of intelligent agents. In this paper, we present an approach with a model for blame and praise detection in text. We build our model based on various theories of blame and include in our model features used by humans determining judgment such as moral agent causality, foreknowledge, intentionality and coercion. An annotated corpus has been created for the task of blame and praise detection from text. The experimental results show that while our model gives similar results compared to supervised classifiers on classifying text as blame, praise or others, it outperforms supervised classifiers on more finer-grained classification of determining the direction of blame and praise, i.e., self-blame, blame-others, self-praise or praise-others, despite not using labelled training data.
Resumo:
In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.
Resumo:
We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks, and Convolutional Neural Network with Attention (CNNA) by adding attention weights into convolutional neural networks. We evaluate various NN architectures on a Twitter dataset containing informal language and an Adverse Drug Effects (ADE) dataset constructed by sampling from MEDLINE case reports. Experimental results show that all the NN architectures outperform the traditional maximum entropy classifiers trained from n-grams with different weighting strategies considerably on both datasets. On the Twitter dataset, all the NN architectures perform similarly. But on the ADE dataset, CNN performs better than other more complex CNN variants. Nevertheless, CNNA allows the visualisation of attention weights of words when making classification decisions and hence is more appropriate for the extraction of word subsequences describing ADRs.
Resumo:
Improved clinical care for Bipolar Disorder (BD) relies on the identification of diagnostic markers that can reliably detect disease-related signals in clinically heterogeneous populations. At the very least, diagnostic markers should be able to differentiate patients with BD from healthy individuals and from individuals at familial risk for BD who either remain well or develop other psychopathology, most commonly Major Depressive Disorder (MDD). These issues are particularly pertinent to the development of translational applications of neuroimaging as they represent challenges for which clinical observation alone is insufficient. We therefore applied pattern classification to task-based functional magnetic resonance imaging (fMRI) data of the n-back working memory task, to test their predictive value in differentiating patients with BD (n=30) from healthy individuals (n=30) and from patients' relatives who were either diagnosed with MDD (n=30) or were free of any personal lifetime history of psychopathology (n=30). Diagnostic stability in these groups was confirmed with 4-year prospective follow-up. Task-based activation patterns from the fMRI data were analyzed with Gaussian Process Classifiers (GPC), a machine learning approach to detecting multivariate patterns in neuroimaging datasets. Consistent significant classification results were only obtained using data from the 3-back versus 0-back contrast. Using contrast, patients with BD were correctly classified compared to unrelated healthy individuals with an accuracy of 83.5%, sensitivity of 84.6% and specificity of 92.3%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their relatives with MDD, were respectively 73.1%, 53.9% and 94.5%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their healthy relatives were respectively 81.8%, 72.7% and 90.9%. We show that significant individual classification can be achieved using whole brain pattern analysis of task-based working memory fMRI data. The high accuracy and specificity achieved by all three classifiers suggest that multivariate pattern recognition analyses can aid clinicians in the clinical care of BD in situations of true clinical uncertainty regarding the diagnosis and prognosis.
Resumo:
Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.
Resumo:
Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.
Resumo:
This paper presents our approach of identifying the profile of an unknown user based on the activities of known users. The aim of author profiling task of PAN@CLEF 2016 is cross-genre identification of the gender and age of an unknown user. This means training the system using the behavior of different users from one social media platform and identifying the profile of other user on some different platform. Instead of using single classifier to build the system we used a combination of different classifiers, also known as stacking. This approach allowed us explore the strength of all the classifiers and minimize the bias or error enforced by a single classifier.
Resumo:
Collecting ground truth data is an important step to be accomplished before performing a supervised classification. However, its quality depends on human, financial and time ressources. It is then important to apply a validation process to assess the reliability of the acquired data. In this study, agricultural infomation was collected in the Brazilian Amazonian State of Mato Grosso in order to map crop expansion based on MODIS EVI temporal profiles. The field work was carried out through interviews for the years 2005-2006 and 2006-2007. This work presents a methodology to validate the training data quality and determine the optimal sample to be used according to the classifier employed. The technique is based on the detection of outlier pixels for each class and is carried out by computing Mahalanobis distances for each pixel. The higher the distance, the further the pixel is from the class centre. Preliminary observations through variation coefficent validate the efficiency of the technique to detect outliers. Then, various subsamples are defined by applying different thresholds to exclude outlier pixels from the classification process. The classification results prove the robustness of the Maximum Likelihood and Spectral Angle Mapper classifiers. Indeed, those classifiers were insensitive to outlier exclusion. On the contrary, the decision tree classifier showed better results when deleting 7.5% of pixels in the training data. The technique managed to detect outliers for all classes. In this study, few outliers were present in the training data, so that the classification quality was not deeply affected by the outliers.