963 resultados para circadian and ultradian rhythms
Resumo:
From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter.
Resumo:
Various transcription factors act as nuclear effectors of the cAMP-dependent signaling pathway. These are the products of three genes in the mouse, CREB, CRE modulator (CREM), and ATF-1. CREM proteins are thought to play important roles within the hypothalamic–pituitary axis and in the control of rhythmic functions in the pineal gland. We have generated CREM-mutant mice and investigated their response in a variety of behavioral tests. CREM-null mice show a drastic increase in locomotion. In contrast to normal mice, the CREM-deficient mice show equal locomotor activity during the circadian cycle. The anatomy of the hypothalamic suprachiasmatic nuclei, the center of the endogenous pacemaker, is normal in mutant mice. Remarkably, CREM mutant mice also elicit a different emotional state, revealed by a lower anxiety in two different behavioral models, but they preserve the conditioned reactiveness to stress. These results demonstrate the high degree of functional specificity of each cAMP-responsive transcription factor in behavioral control.
Resumo:
The pervasive role of circadian clocks in regulating physiology and behavior is widely recognized. Their adaptive value is their ability to be entrained by environmental cues such that the internal circadian phase is a reliable predictor of solar time. In mammals, both light and nonphotic behavioral cues can entrain the principal oscillator of the hypothalamic suprachiasmatic nuclei (SCN). However, although light can advance or delay the clock during circadian night, behavioral events trigger phase advances during the subjective day, when the clock is insensitive to light. The recent identification of Period (Per) genes in mammals, homologues of dperiod, which encodes a core element of the circadian clockwork in Drosophila, now provides the opportunity to explain circadian timing and entrainment at a molecular level. In mice, expression of mPer1 and mPer2 in the SCN is rhythmic and acutely up-regulated by light. Moreover, the temporal relations between mRNA and protein cycles are consistent with a clock based on a transcriptional/translational feedback loop. Here we describe circadian oscillations of Per1 and Per2 in the SCN of the Syrian hamster, showing that PER1 protein and mRNA cycles again behave in a manner consistent with a negative-feedback oscillator. Furthermore, we demonstrate that nonphotic resetting has the opposite effect to light: acutely down-regulating these genes. Their sensitivity to nonphotic resetting cues supports their proposed role as core elements of the circadian oscillator. Moreover, this study provides an explanation at the molecular level for the contrasting but convergent effects of photic and nonphotic cues on the clock.
Resumo:
Circadian expression of the luciferin-binding protein (LBP) from the dinoflagellate Gonyaulax polyedra is regulated at the translational level. A small interval in the lbp 3′-untranslated region, which contains seven UG-repeats, serves as a cis-acting element to which a trans-acting factor (CCTR) binds in a circadian manner. Its binding activity correlates negatively with the circadian expression of LBP. Here I report the identification of a protein in the green alga Chlamydomonas reinhardtii that represents a CCTR analog. It binds both specifically and under control of the circadian clock to the UG-repeat region. The data show for the first time that circadian cis-elements implicated in translational regulation have been conserved during evolution.
Resumo:
Photoreceptors of the Xenopus laevis retina are the site of a circadian clock. As part of a differential display screen for rhythmic gene products in this system, we have identified a photoreceptor-specific mRNA expressed in peak abundance at night. cDNA cloning revealed an open reading frame encoding a putative 388 amino acid protein that we have named “nocturnin” (for night-factor). This protein has strong sequence similarity to the C-terminal domain of the yeast transcription factor, CCR4, as well as a leucine zipper-like dimerization motif. Nocturnin mRNA levels exhibit a high amplitude circadian rhythm and nuclear run-on analysis indicates that it is controlled by the retinal circadian clock at the level of transcription. Our observations suggest that nocturnin may function through protein–protein interaction either as a component of the circadian clock or as a downstream effector of clock function.
Resumo:
We investigated the circadian function of Drosophila dopamine receptors by using a behaviorally active decapitated preparation that allows for direct application of drugs to the nerve cord. Quinpirole, a D2-like dopamine receptor agonist, induces reflexive locomotion in decapitated flies. We show that the amount of locomotion induced changes as a function of the time of day, with the highest responsiveness to quinpirole during the subjective night. Furthermore, dopamine receptor responsiveness is under circadian control and depends on the normal function of the period gene. The head pacemaker is at least partly dispensable for the circadian modulation of quinpirole-induced locomotion, because changes in agonist responsiveness persist in decapitated flies that are aged for 12 h. This finding suggests a role for the period-dependent molecular oscillators in the body in the modulation of amine receptor responsiveness.
Resumo:
In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.
Resumo:
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix–loop–helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.
Resumo:
Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain. The LOV domains share homology with the PER-ARNT-SIM (PAS) superfamily, a diverse group of sensor proteins. Each LOV domain noncovalently binds a single FMN molecule and exhibits reversible photochemistry in vitro when expressed separately or in tandem. We have determined the crystal structure of the LOV2 domain from the phototropin segment of the chimeric fern photoreceptor phy3 to 2.7-Å resolution. The structure constitutes an FMN-binding fold that reveals how the flavin cofactor is embedded in the protein. The single LOV2 cysteine residue is located 4.2 Å from flavin atom C(4a), consistent with a model in which absorption of blue light induces formation of a covalent cysteinyl-C(4a) adduct. Residues that interact with FMN in the phototropin segment of the chimeric fern photoreceptor (phy3) LOV2 are conserved in LOV domains from phototropin of other plant species and from three proteins involved in the regulation of circadian rhythms in Arabidopsis and Neurospora. This conservation suggests that these domains exhibit the same overall fold and share a common mechanism for flavin binding and light-induced signaling.
Resumo:
Circadian rhythms describe biological phenomena that oscillate with an ≈24-hour cycle. These rhythms include blood pressure, body temperature, hormone levels, the number of immune cells in blood, and the sleep-wake cycle. In this paper, we will focus on common genes between species that are responsible for determining the circadian behavior, especially some transcription factors (i.e., switch genes) that serve to regulate many circadian rhythm genes. The intent of this summary is to introduce the common molecular mechanism of biological clocks between flies and humans and then to describe the research from three laboratories that was presented in the session.
Resumo:
The level of mRNAs derived from the plastid-encoded psbD light-responsive promoter (LRP) is controlled by a circadian clock(s) in wheat (Triticum aestivum). The circadian oscillations in the psbD LRP mRNA level persisted for at least three cycles in continuous light and for one cycle in continuous dark, with maxima in subjective morning and minima in subjective early night. In vitro transcription in chloroplast extracts revealed that the circadian cycles in the psbD LRP mRNA level were dominantly attributed to the circadian-regulated transcription of the psbD LRP. The effects of various mutations introduced into the promoter region on the psbD LRP activity in vitro suggest the existence of two positive elements located between −54 and −36, which generally enhance the transcription activity, and an anomalous core promoter structure lacking the functional “−35” element, which plays a crucial role in the circadian fluctuation and light dependency of psbD LRP transcription activity.
Resumo:
The time course of and the influence of light intensity and light quality on the induction of a mitochondrial carbonic anhydrase (CA) in the unicellular green alga Chlamydomonas reinhardtii was characterized using western and northern blots. This CA was expressed only under low-CO2 conditions (ambient air). In asynchronously grown cells, the mRNA was detected 15 min after transfer from air containing 5% CO2 to ambient air, and the 21-kD polypeptide was detected on western blots after 1 h. When transferred back to air containing 5% CO2, the mRNA disappeared within 1 h and the polypeptide was degraded within 3 d. Photosynthesis was required for the induction in asynchronous cultures. The induction increased with light up to 500 μmol m−2 s−1, where saturation occurred. In cells grown synchronously, however, expression of the mitochondrial CA was also detected in darkness. Under such conditions the expression followed a circadian rhythm, with mRNA appearing in the dark 30 min before the light was turned on. Algae left in darkness continued this rhythm for several days.
Resumo:
The chicken pineal gland contains the autonomous circadian oscillator together with the photic-input pathway. We searched for chicken pineal genes that are induced by light in a time-of-day-dependent manner, and isolated chicken homolog of bZIP transcription factor E4bp4 (cE4bp4) showing high similarity to vrille, one of the Drosophila clock genes. cE4bp4 was expressed rhythmically in the pineal gland with a peak at very early (subjective) night under both 12-h light/12-h dark cycle and constant dark conditions, and the phase was nearly opposite to the expression rhythm of cPer2, a chicken pineal clock gene. Luciferase reporter gene assays showed that cE4BP4 represses cPer2 promoter through a E4BP4-recognition sequence present in the 5′-flanking region, indicating that cE4BP4 can down-regulate the chick pineal cPer2 expression. In vivo light-perturbation studies showed that the prolongation of the light period to early subjective night maintained the high level expression of the pineal cE4bp4, and presumably as a consequence delayed the onset of the induction of the pineal cPer2 expression in the next morning. These light-dependent changes in the mRNA levels of the pineal cE4bp4 and cPer2 were followed by a phase-delay of the subsequent cycles of cE4bp4/cPer2 expression, suggesting that cE4BP4 plays an important role in the phase-delaying process as a light-dependent suppressor of cPer2 gene.
Resumo:
We report that fast (mainly 30- to 40-Hz) coherent electric field oscillations appear spontaneously during brain activation, as expressed by electroencephalogram (EEG) rhythms, and they outlast the stimulation of mesopontine cholinergic nuclei in acutely prepared cats. The fast oscillations also appear during the sleep-like EEG patterns of ketamine/xylazine anesthesia, but they are selectively suppressed during the prolonged phase of the slow (<1-Hz) sleep oscillation that is associated with hyperpolarization of cortical neurons. The fast (30- to 40-Hz) rhythms are synchronized intracortically within vertical columns, among closely located cortical foci, and through reciprocal corticothalamic networks. The fast oscillations do not reverse throughout the depth of the cortex. This aspect stands in contrast with the conventional depth profile of evoked potentials and slow sleep oscillations that display opposite polarity at the surface and midlayers. Current-source-density analyses reveal that the fast oscillations are associated with alternating microsinks and microsources across the cortex, while the evoked potentials and the slow oscillation display a massive current sink in midlayers, confined by two sources in superficial and deep layers. The synchronization of fast rhythms and their high amplitudes indicate that the term "EEG desynchronization," used to designate brain-aroused states, is incorrect and should be replaced with the original term, "EEG activation" [Moruzzi, G. & Magoun, H.W. (1949) Electroencephalogr. Clin. Neurophysiol. 1, 455-473].