863 resultados para change detection, visione stereo, background difference
Resumo:
This paper presents an approach for detecting local damage in large scale frame structures by utilizing regularization methods for ill-posed problems. A direct relationship between the change in stiffness caused by local damage and the measured modal data for the damaged structure is developed, based on the perturbation method for structural dynamic systems. Thus, the measured incomplete modal data can be directly adopted in damage identification without requiring model reduction techniques, and common regularization methods could be effectively employed to solve the developed equations. Damage indicators are appropriately chosen to reflect both the location and severity of local damage in individual components of frame structures such as in brace members and at beam-column joints. The Truncated Singular Value Decomposition solution incorporating the Generalized Cross Validation method is introduced to evaluate the damage indicators for the cases when realistic errors exist in modal data measurements. Results for a 16-story building model structure show that structural damage can be correctly identified at detailed level using only limited information on the measured noisy modal data for the damaged structure.
Resumo:
The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.
Resumo:
The abundance of wild salmon (Salmo salar) in the North Atlantic has declined markedly since the late 1980s as a result of increased marine mortality that coincided with a marked rise in sea temperature in oceanic foraging areas. There is substantial evidence to show that temperature governs the growth, survival, and maturation of salmon during their marine migrations through either direct or indirect effects. In an earlier study (2003), long-term changes in three trophic levels (salmon, zooplankton, and phytoplankton) were shown to be correlated significantly with sea surface temperature (SST) and northern hemisphere temperature (NHT). A sequence of trophic changes ending with a stepwise decline in the total nominal catch of North Atlantic salmon (regime shift in ∼1986/1987) was superimposed on a trend to a warmer dynamic regime. Here, the earlier study is updated with catch and abundance data to 2010, confirming earlier results and detecting a new abrupt shift in ∼1996/1997. Although correlations between changes in salmon, plankton, and temperature are reinforced, the significance of the correlations is reduced because the temporal autocorrelation of time-series substantially increased due to a monotonic trend in the time-series, probably related to global warming. This effect may complicate future detection of effects of climate change on natural systems.
Resumo:
Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing and pH is decreasing. These unparalleled changes present new challenges for managing our seas, as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve good environmental status (GES) in their seas by 2020; this means management towards GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so, an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring programme that has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European Seas. Thus, the continuation of long-term ecological time series such as the CPR survey is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.
Resumo:
A regime shift is a large, sudden, and long-lasting change in the dynamics of an ecosystem, affecting multiple trophic levels. There are a growing number of papers that report regime shifts in marine ecosystems. However, the evidence for regime shifts is equivocal, because the methods used to detect them are not yet well developed. We have collated over 300 biological time series from seven marine regions around the UK, covering the ecosystem from phytoplankton to marine mammals. Each time series consists of annual measures of abundance for a single group of organisms over several decades. We summarised the data for each region using the first principal component, weighting either each time series or each biological component (e.g. plankton, fish, benthos) equally. We then searched for regime shifts using Rodionov’s regime shift detection (RSD) method, which found regime shifts in the first principal component for all seven marine regions. However, there are consistent temporal trends in the data for six of the seven regions. Such trends violate the assumptions of RSD. Thus, the regime shifts detected by RSD in six of the seven regions are likely to be artefacts caused by temporal trends. We are therefore developing more appropriate time series models for both single populations and whole communities that will explicitly model temporal trends and should increase our ability to detect true regime shift events.
Resumo:
Satellite-based remote sensing of active fires is the only practical way to consistently and continuously monitor diurnal fluctuations in biomass burning from regional, to continental, to global scales. Failure to understand, quantify, and communicate the performance of an active fire detection algorithm, however, can lead to improper interpretations of the spatiotemporal distribution of biomass burning, and flawed estimates of fuel consumption and trace gas and aerosol emissions. This work evaluates the performance of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Thermal Anomaly (FTA) detection algorithm using seven months of active fire pixels detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) across the Central African Republic (CAR). Results indicate that the omission rate of the SEVIRI FTA detection algorithm relative to MODIS varies spatially across the CAR, ranging from 25% in the south to 74% in the east. In the absence of confounding artifacts such as sunglint, uncertainties in the background thermal characterization, and cloud cover, the regional variation in SEVIRI's omission rate can be attributed to a coupling between SEVIRI's low spatial resolution detection bias (i.e., the inability to detect fires below a certain size and intensity) and a strong geographic gradient in active fire characteristics across the CAR. SEVIRI's commission rate relative to MODIS increases from 9% when evaluated near MODIS nadir to 53% near the MODIS scene edges, indicating that SEVIRI errors of commission at the MODIS scene edges may not be false alarms but rather true fires that MODIS failed to detect as a result of larger pixel sizes at extreme MODIS scan angles. Results from this work are expected to facilitate (i) future improvements to the SEVIRI FTA detection algorithm; (ii) the assimilation of the SEVIRI and MODIS active fire products; and (iii) the potential inclusion of SEVIRI into a network of geostationary sensors designed to achieve global diurnal active fire monitoring.
Resumo:
Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.
Resumo:
Addressing the multitude of challenges in marine policy requires an integrated approach that considers the multitude of drivers, pressures, and interests, from several disciplinary angles. Scenarios are needed to harmonise the analyses of different components of the marine system, and to deal with the uncertainty and complexity of the societal and biogeophysical dynamics in the system. This study considers a set of socio-economic scenarios to (1) explore possible futures in relation to marine invasive species, outbreak forming species, and gradual changes in species distribution and productivity; and (2) harmonise the projection modelling performed within associated studies. The exercise demonstrates that developing interdisciplinary scenarios as developed in this study is particularly complicated due to (1) the wide variety in endogeneity or exogeneity of variables in the different analyses involved; (2) the dual role of policy decisions as variables in a scenario or decisions to be evaluated and compared to other decisions; and (3) the substantial difference in time scale between societal and physical drivers.
Resumo:
Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.
Resumo:
BACKGROUND: Hypertension and cognitive impairment are prevalent in older people. It is known that hypertension is a direct risk factor for vascular dementia and recent studies have suggested hypertension also impacts upon prevalence of Alzheimer's disease. The question is therefore whether treatment of hypertension lowers the rate of cognitive decline. OBJECTIVES: To assess the effects of blood pressure lowering treatments for the prevention of dementia and cognitive decline in patients with hypertension but no history of cerebrovascular disease. SEARCH STRATEGY: The trials were identified through a search of CDCIG's Specialised Register, CENTRAL, MEDLINE, EMBASE, PsycINFO and CINAHL on 27 April 2005. SELECTION CRITERIA: Randomized, double-blind, placebo controlled trials in which pharmacological or non-pharmacological interventions to lower blood pressure were given for at least six months. DATA COLLECTION AND ANALYSIS: Two independent reviewers assessed trial quality and extracted data. The following outcomes were assessed: incidence of dementia, cognitive change from baseline, blood pressure level, incidence and severity of side effects and quality of life. MAIN RESULTS: Three trials including 12,091 hypertensive subjects were identified. Average age was 72.8 years. Participants were recruited from industrialised countries. Mean blood pressure at entry across the studies was 170/84 mmHg. All trials instituted a stepped care approach to hypertension treatment, starting with a calcium-channel blocker, a diuretic or an angiotensin receptor blocker. The combined result of the three trials reporting incidence of dementia indicated no significant difference between treatment and placebo (Odds Ratio (OR) = 0.89, 95% CI 0.69, 1.16). Blood pressure reduction resulted in a 11% relative risk reduction of dementia in patients with no prior cerebrovascular disease but this effect was not statistically significant (p = 0.38) and there was considerable heterogeneity between the trials. The combined results from the two trials reporting change in Mini Mental State Examination (MMSE) did not indicate a benefit from treatment (Weighted Mean Difference (WMD) = 0.10, 95% CI -0.03, 0.23). Both systolic and diastolic blood pressure levels were reduced significantly in the two trials assessing this outcome (WMD = -7.53, 95% CI -8.28, -6.77 for systolic blood pressure, WMD = -3.87, 95% CI -4.25, -3.50 for diastolic blood pressure).Two trials reported adverse effects requiring discontinuation of treatment and the combined results indicated a significant benefit from placebo (OR = 1.18, 95% CI 1.06, 1.30). When analysed separately, however, more patients on placebo in SCOPE were likely to discontinue treatment due to side effects; the converse was true in SHEP 1991. Quality of life data could not be analysed in the three studies. There was difficulty with the control group in this review as many of the control subjects received antihypertensive treatment because their blood pressures exceeded pre-set values. In most cases the study became a comparison between the study drug against a usual antihypertensive regimen. AUTHORS' CONCLUSIONS: There was no convincing evidence from the trials identified that blood pressure lowering prevents the development of dementia or cognitive impairment in hypertensive patients with no apparent prior cerebrovascular disease. There were significant problems identified with analysing the data, however, due to the number of patients lost to follow-up and the number of placebo patients given active treatment. This introduced bias. More robust results may be obtained by analysing one year data to reduce differential drop-out or by conducting a meta-analysis using individual patient data.
Resumo:
The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.
Resumo:
Background: In recent years, following the publication of Tomorrow's Doctors, the undergraduate medical curriculum in most UK medical schools has undergone major revision. This has resulted in a significant reduction in the time allocated to the teaching of the basic medical sciences, including anatomy. However, it is not clear what impact these changes have had on medical students' knowledge of surface anatomy. Aim: This study aimed to assess the impact of these curricular changes on medical students' knowledge of surface anatomy. Setting: Medical student intakes for 1995-98 at the Queen's University of Belfast, UK. Methods: The students were invited to complete a simple examination paper testing their knowledge of surface anatomy. Results from the student intake of 1995, which undertook a traditional, 'old' curriculum, were compared with those from the student intakes of 1996-98, which undertook a new, 'systems-based' curriculum. To enhance linear response and enable the use of linear models for analysis, all data were adjusted using probit transformations of the proportion (percentage) of correct answers for each item and each year group. Results: The student intake of 1995 (old curriculum) were more likely to score higher than the students who undertook the new, systems-based curriculum. Conclusion: The introduction of the new, systems-based course has had a negative impact on medical students' knowledge of surface anatomy.
Resumo:
Background & Aims: Wide between-center variation in adenoma detection rates (ADRs) was observed in the U.K. Flexible Sigmoidoscopy Screening Trial (overall, 12.1%; range, 8.6%-15.9%; P <0.0001). The aim of this study was to determine whether the observed differences could be attributed to varying performance by endoscopists, to examine the effect of experience on performance, and to identify an attainable, standard ADR to which endoscopists could aspire.
Methods: Thirteen medical endoscopists, one per trial center, each performed about 3000 examinations (200 per month) using the same equipment and protocol. Overall and monthly ADRs were compared using multivariable logistic regression.
Results: Differences in ADRs were not explained by patient characteristics, incidence of colorectal cancer in the local population, or the endoscopists' medical specialty or previous experience. Average ADRs increased significantly with screening experience (up to 400 examinations). Endoscopists were classified as higher, intermediate, or lower adenoma detectors, and performance levels were maintained over time. Higher detectors had ADRs of 15% overall (men, 20%; women, 10%) and also detected more adenomas per case (higher/lower detectors, 21.7/10.4 adenomas per :100 examinations).
Conclusions: The differences in ADRs were due to variation in performance of the endoscopists. Long-term follow-up will determine whether this variation is clinically important. We suggest that the standards in higher detecting centers should be achievable by all endoscopists screening unscreened populations aged older than 55 years. Endoscopists should aim to stay above the lower 95% confidence interval band for 200 examinations (10% overall; 5% in women, 15% in men).
A model for developing, implementing and evaluating a strategy to improve nursing and midwifery care
Resumo:
Background: Health care organizations world wide are faced with the need to develop and implement strategic organizational plans to meet the challenges of modern health care. There is a need for models for developing, implementing and evaluating strategic plans that engage practitioners, and make a measurable difference to the patients that they serve. This article describes the development of such a model to underpin a strategy for nursing and midwifery in an acute hospital trust. An integrated model: The processes for strategy development (values clarification, critical companionship and focus groups) are discussed, together with the development of processes for implementation, based upon a modification of the PARIHS (Promoting Action on Research Implementation in Health Services) conceptual framework. Finally, the methods for evaluating the strategy (a pre-test/post-test approach measuring the quality of nursing care, the degree to which the organization supports professional nursing care, the leadership styles of ward managers, and patient satisfaction with care) are described. Conclusion: The model is offered as one that may be of use to others who wish to develop an integrated approach to strategic change; an approach in which the development, implementation and evaluation of strategic plans are informed by the core values of nurses and midwives.
Resumo:
A novel anthracene-tagged oligonucleotide can discriminate between a fully-matched DNA target sequence and one with a single mismatching base-pair through a remarkable difference in fluorescence emission intensity upon duplex formation.