961 resultados para cereal cyst nematode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Late Weichselian and Holocene dinoflagellate cyst assemblages have been investigated at two stations situated close to the modern Polar Front at the continental margin oft East Greenland. Both the concentrations of dinoflagelate cysts and the assemblage composition reflect changes in the surface water conditions, occurring in distinct steps during the past 15,000 years. Low concentrations of dinoflagellate cysts during Termination Ia suggest harsh environmental conditions, most probably caused by an extensive sea-ice cover and/or a high influx of low salinity meltwater. A surface water warming was recorded from 13,000 - 12,000 years BP, related to the inflow of warmer water trom the North Atlantic into the western Norwegian-Greenland Sea. The interval between Terminations la and Ib was characterized by a strong seasonality with an extensive sea-ice cover in winter and relatively warm surface waters in summer. At the transition to the Holocene, a reorganisation of the hydrography resulted in surface water conditions characteristic for the Holocene with three well-defined major water masses and oceanographic fronts The modern water mass conditions at both stations were established at the end of Termination Ib, around 6,400 to 6,800 years BP. In general, the influence of colder surface waters was more pronounced at the location off Scoresby Sund throughout the Holocene. Arctic water had the strongest influence at both stations in the middle Holocene. A progressive cooling with an increase in sea-ice cover is time-transgressivelyrecorded at both stations during the Holocene, indicating that the Polar Front moved to its present position or that branches of the zonal currents expanded from the East Greenland shell eastward during tlie last 3,000 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A marine sediment core from Vaigat in Disko Bugt, West Greenland, has been analysed in terms of lithology, dinoflagellate cysts and foraminifera in order to evaluate the influence of oceanographic variability on West Greenland glacier stability. The data show that during the past 5200 years the Atlantic foraminiferal abundance in the subsurface waters of the West Greenland Current (WGC) episodically increased, indicating periods of increases in the inflow of subsurface warm Atlantic water at 2000 - 1500 cal. yr BP and 1300 cal. yr BP as well as periods of less pronounced increased bottom-water temperatures around 4700 - 4000 cal. yr BP, 3100 - 2800, 2600, 1000 - 800, 500 - 400, and at 200 cal. yr. The sedimentological and dinoflagellate cyst data indicate that these episodes with enhanced advection of Irminger Sea-derived waters are accompanied by increased iceberg rafting, which we link to increased iceberg calving in relation to destabilization of the Jakobshavn Isbrae. The long-term trend in the data documents the end of a late-Holocene Thermal Maximum between 5200 and 4300 cal. yr BP and a final onset of the Neoglaciation at 3500 cal. yr BP. Increased responses of the iceberg rafting after 3500 cal. yr BP, reflects a westward/seaward advance of the glacier margin in relation to onset of Neoglaciation and a development of the glacier into a floating tongue after 2000 cal. yr BP. A comparison of our record with a record from the eastern North Atlantic indicates that a NAO-like anomaly pattern between subsurface waters in West Greenland and atmospheric temperature in the Eastern North Atlantic may have been operating during most of the late Holocene. However, during the past 1000 years the NAO signal may have weakened as some other mode of climate variability overprints the anti-phase climate signal in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyst assemblages from Sites 548, 549, and 550 were examined and gave evidence of early Eocene to late Miocene age. These assemblages were compared with other North Atlantic DSDP sites and with onshore sections in Denmark, southern England, Spain, and Italy. Some environmental interpretation is attempted for the Miocene assemblages; pollen, spores, and dinoflagellate cyst species were used to interpret the proximity of the shoreline. Key species are illustrated, along with some forms that are not discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climatic deterioration related to the onset of Northern Hemisphere glaciations (circa 2.52 Ma BP) must have lead to reorganization and relocation of species associations and may have enhanced species turnover. The present study investigates how this deterioration affects the dinoflagellate cyst and acritarch assemblages from two locations, DSDP Site 607 (North Atlantic) and the Singa section (southern Italy). The records from these locations cover the interval from 2.8 to 2.2 Ma with at least a 5 ka resolution and they have been correlated to the Milankovitch periodicities on a cycle to cycle basis by means of integrated high resolution stable isotope, calcium carbonate, foraminiferal, palynological and magnetostratigraphical datasets. In the present study this high resolution stratigraphic framework is used for a detailed correlation of events occurring in each of the depositional sequences. It also enables further assessment of the palaeoenvironmental preferences of some dinoflagellate cyst forms. Comparison of the two palynological records reveals a close correspondence in the timing of major assemblage changes and extinction events, confirming their Milankovitch cycle based correlation. A close link between periods of Northern Hemisphere cooling (at oxygen isotope stages 110, 104 and 100-96) and increased dinoflagellate cyst turnover appears to be present for both DSDP Site 607 and the Singa section. The turnover events can also be recognized in the records of planktic foraminifera and calcamous nannoplankton. Comparison of the Singa section with Site 607 and with other time equivalent marine palynological data sets, shows that some oceanic taxa respond similarly over a large area. The biostratigraphical implications are discussed. Notably the last occurrence of Invertocystu lucrymosa appears to be a valuable marker for isotope stage 110 in the Mediterranean and North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dinoflagellate cysts and other organic-walled microfossils have been studied in recent surface sediments from the entire Norwegian-Greenland Sea. More than 30 taxa have been recognized, of which only few show a distinct distribution pattern, and allow description of four assemblages. The occurrence of most taxa is related to the relatively warmer waters of the Norwegian Sea. Algidaspaeridium? minutum s.1., Brigantedinium simplex and Impagidinium? pallidum are the only species showing a preference for colder water masses. Two species, I.? pallidum and Nematosphaeropsis labyrinthus are mainly restricted to the oceanic environment, whereas the other species have also been reported from neritic environments in previous studies. Due to the limited knowledge of the ecological and sedimentological factors influencing the occurrence of dinoflagellate cysts in oceanic environments, their distribution in recent sediments can be only related to surface water masses in a broad sense. Although the distribution of assemblages correlates with specific surface water masses, comparison with assemblages recovered from sediment traps deployed basinwide in the Norwegian-Greenland Sea (Dale and Dale, 1992) revealed some major discrepancies in species composition and percentage abundances. The differences cannot be explained with certainty at the moment, although there is some evidence that transport of dinoflagellate cysts and other fossilizable microplankton in water masses by currents, in sea-ice and sediments may modify the assemblages found in recent oceanic surface sediments from the Norwegian-Greenland Sea.