933 resultados para cannabinoid drugs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions have been explained by the hapten concept, according to which a small chemical compound is too small to be recognized by the immune system. Only after covalently binding to an endogenous protein the immune system reacts to this so called hapten-carrier complex, as the larger molecule (protein) is modified, and thus immunogenic for B and T cells. Consequently, a B and T cell immune response might develop to the drug with very heterogeneous clinical manifestations. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the MHC-peptide complex in order to trigger an immune response. Rather, some drugs may bind directly and reversibly to immune receptors like the major histocompatibility complex (MHC) or the T cell receptor (TCR), thereby stimulating the cells similar to a pharmacological activation of other receptors. This concept has been termed pharmacological interaction with immune receptors the (p-i) concept. While the exact mechanism is still a matter of debate, non-covalent drug presentation clearly leads to the activation of drug-specific T cells as documented for various drugs (lidocaine, sulfamethoxazole (SMX), lamotrigine, carbamazepine, p-phenylendiamine, etc.). In some patients with drug hypersensitivity, such a response may occur within hours even upon the first exposure to the drug. Thus, the reaction to the drug may not be due to a classical, primary response, but rather be mediated by stimulating existing, pre-activated, peptide-specific T cells that are cross specific for the drug. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the peculiar nature of many drug hypersensitivity reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myelosuppression is the most common unwanted side effect associated with the administration of anticancer drugs, and infections remain a common cause of death in chemotherapy-treated patients. Several mechanisms of the cytotoxicity of these drugs have been proposed and may synergistically operate in a given cell. Survivin expression has been associated with cancer, but recent reports suggest that this molecule is also expressed in several immature and mature hematopoietic cells. Here, we provide evidence that treatment of immature neutrophils with anticancer drugs reduced endogenous survivin levels causing apoptosis. The anticancer drugs did not directly target survivin, instead they blocked the activity of phosphatidylinositol-3-OH kinase, which regulated survivin expression and apoptosis in these cells. Strikingly, and in contrast to other cells, this pathway did not involve the serine/threonine kinase c-akt/PKB. Moreover, in combination with anticancer drug therapy, rapamycin did not induce increased myelosuppression in an experimental lymphoma mouse model. These data suggest that drugs that block either c-akt/PKB or signaling molecules located distal to c-akt/PKB may preferentially induce apoptosis of cancer cells as they exhibit no cytotoxicity for immature neutrophils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total plasma concentrations are currently measured for therapeutic drug monitoring of HIV protease inhibitors (PIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). However, the pharmacological target of antiretroviral drugs reside inside cells. To study the variability of their cellular accumulation, and to determine to which extent total plasma concentrations (TPC) correlate with cellular concentrations (CC), plasma and peripheral blood mononuclear cells (PBMCs) were simultaneously collected at single random times after drug intake from 133 HIV infected patients. TPC levels were analysed by high-performance liquid chromatography with ultraviolet detection and CC by LC-MS/MS from peripheral blood mononuclear cells. The best correlations between TPC and CC were observed for nelfinavir (NFV, slope=0.93, r=0.85), saquinavir (SQV, slope=0.76, r=0.80) and lopinavir (LPV, slope=0.87, r=0.63). By contrast, TPC of efavirenz (EFV) exhibited a moderate correlation with CC (slope=0.69, r=0.58), while no correlation was found for nevirapine (NVP, slope=-0.3, r=0.1). Interindividual variability in the CC/TPC ratio was lower for protease inhibitors (coefficients of variation 76%, 61%, and 80% for SQV, NFV and LPV, respectively) than for nonnucleoside reverse transcriptase inhibitors (coefficients of variation 101% and 318%, for EFV and NVP). As routine CC measurement raises practical difficulties, well-correlated plasma concentrations (ie, NFV, SQV and LPV) can probably be considered as appropriate surrogates for cellular drug exposure. For drugs such as EFV or NVP, there may be room for therapeutic drug monitoring improvement using either direct CC determination or other predictive factors such as genotyping of transporters or metabolizing enzyme genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheumatic diseases in women of childbearing years may necessitate drug treatment during a pregnancy, to control maternal disease activity and to ensure a successful pregnancy outcome. This survey is based on a consensus workshop of international experts discussing effects of anti-inflammatory, immunosuppressive and biological drugs during pregnancy and lactation. In addition, effects of these drugs on male and female fertility and possible long-term effects on infants exposed to drugs antenatally are discussed where data were available. Recommendations for drug treatment during pregnancy and lactation are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key-lock principle). OBJECTIVES: We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key-lock principle. METHODS: Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands. RESULTS: Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1. CONCLUSIONS: The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key-lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neospora caninum represents an important pathogen causing stillbirth and abortion in cattle and neuromuscular disease in dogs. Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) are nitro-thiazolyl-salicylamide drugs with a broad-spectrum anti-parasitic activity in vitro and in vivo. In order to generate compounds potentially applicable in food and breeding animals, the nitro group was removed, and the thiazole-moiety was modified by other functional groups. We had shown earlier that replacement of the nitro-group by a bromo-moiety did not notably affect in vitro efficacy of the drugs against N. caninum. In this study we report on the characterization of two bromo-derivatives, namely Rm4822 and its de-acetylated putative metabolite Rm4847 in relation to the nitro-compounds NTZ and TIZ. IC(50) values for proliferation inhibition were 4.23 and 4.14 microM for NTZ and TIZ, and 14.75 and 13.68 microM for Rm4822 and Rm4847, respectively. Complete inhibition (IC(99)) was achieved at 19.52 and 22.38 microM for NTZ and TIZ, and 18.21 and 17.66 microM for Rm4822 and Rm4847, respectively. However, in order to exert a true parasiticidal effect in vitro, continuous culture of infected fibroblasts in the presence of the bromo-thiazolide Rm4847 was required for a period of 3 days, while the nitro-compound TIZ required 5 days continuous drug exposure. Both thiazolides induced rapid egress of N. caninum tachyzoites from their host cells, and egress was inhibited by the cell membrane permeable Ca(2+)-chelator BAPTA-AM. Host cell entry by N. caninum tachyzoites was inhibited by Rm4847 but not by TIZ. Upon release from their host cells, TIZ-treated parasites remained associated with the fibroblast monolayer, re-invaded neighboring host cells and resumed proliferation in the absence of the drug. In contrast, Rm4847 inhibited host cell invasion and respective treated tachyzoites did not proliferate further. This demonstrated that bromo- and nitro-thiazolides exhibit differential effects against the intracellular protozoan N. caninum and bromo-thiazolides could represent a valuable alternative to the nitro-thiazolyl-salicylamide drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Historically, there have been few drug trials for antihypertensive treatment in childhood and recommendations have been extrapolated from data obtained in adulthood. During the last decade an increased awareness of the risks of childhood hypertension stimulated clinical trials of antihypertensive agents in children. OBJECTIVE: The aim of this article is to systematically review the studies published between 1995 and 2006 that deal with the effect of antihypertensive drugs on childhood hypertension or proteinuria. METHODS: Medline, Current Contents, personal files and reference lists were used as data sources. RESULTS: Fifty-two out of 79 initially found reports were excluded. Consequently 27 articles were retained for the final analysis. The blood pressure reduction was similar with angiotensin-converting enzyme inhibitors (10.7/8.1 mmHg), angiotensin II receptor antagonists (10.5/6.9 mmHg) and calcium-channel blockers (9.3/7.2 mmHg). In addition angiotensin-converting enzyme inhibitors (by 49%) and angiotensin II receptor antagonists (by 59%) significantly reduced pathological proteinuria. CONCLUSIONS: The blood pressure reduction of angiotensin-converting enzyme inhibitors, angiotensin II receptor antagonists and calcium-channel blockers is almost identical. In children with pathological proteinuria angiotensin-converting enzyme inhibitors or angiotensin II antagonists are superior to calcium-channel blockers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the prescription pattern of antihypertensive drugs for children with impaired kidney function. We have therefore documented the use of antihypertensive drugs in this patient group by evaluating the Italian pediatric population-based registry of patients with chronic kidney disease on conservative treatment (ItalKid) from 1995 to 2003. In 1995, prescriptions written for antihypertensive drugs for use by children were approximately equally divided among drugs blocking the renin-angiotensin system and calcium channel blockers (38 vs. 43% of all prescriptions), followed by beta-blockers and diuretics (15 and 4%, respectively). During subsequent years the proportion of prescriptions for drugs blocking the renin-angiotensin system increased (2003: 61%; p<0.001) and that of calcium channel blockers decreased (2003: 18%, p<0.001). In 1995, blockers of the renin-angiotensin system were prescribed, either as monotherapy or in combination, in 53% of the patients, but the relative frequency of the patients prescribed these drugs increased up to 83% in 2003 (p<0.0005). In conclusion, physicians caring for Italian children with impaired kidney function are increasingly prescribing drugs blocking the renin-angiotensin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even if the pathogenesis of type-I (insulin-dependent) diabetes mellitus is still not clarified in every detail, there is general agreement that this form of diabetes is induced by autoimmune mechanisms leading to beta-cell destruction. Therefore, it should theoretically be feasible to suppress the mechanism leading to type-I diabetes with appropriate and early immunotherapy. The current clinical data clearly document that the rate and duration of remissions in patients with newly diagnosed type-I diabetes can be increased significantly using appropriate immunosuppressive regimens. However, before these therapies can become standard therapy of type-I diabetes, the following important clinical requirements have to be fulfilled: the toxicity (especially to kidneys and beta-cells) has to be reduced, the patients should be diagnosed and treated in 'pre-diabetic' states, more selective immunosuppressive regimens have to be available in order to reduce the occurrence of treatment-associated lymphomas and neoplasias. Since accurate detection of 'pre-diabetic' patients is difficult and presents an immense logistic problem, it may take a long time before large-scale immunosuppressive therapies of type-I diabetes are feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of many infectious diseases is under threat from drug resistance. Understanding the mechanisms of resistance is as high a priority as the development of new drugs. We have investigated the basis for cross-resistance between the diamidine and melaminophenyl arsenical classes of drugs in African trypanosomes. We induced high levels of pentamidine resistance in a line without the tbat1 gene that encodes the P2 transporter previously implicated in drug uptake. We isolated independent clones that displayed very considerable cross-resistance with melarsen oxide but not phenylarsine oxide and reduced uptake of [(3)H]pentamidine. In particular, the high-affinity pentamidine transport (HAPT1) activity was absent in the pentamidine-adapted lines, whereas the low affinity pentamidine transport (LAPT1) activity was unchanged. The parental tbat1(-/-) line was sensitive to lysis by melarsen oxide, and this process was inhibited by low concentrations of pentamidine, indicating the involvement of HAPT1. This pentamidine-inhibitable lysis was absent in the adapted line KO-B48. Likewise, uptake of the fluorescent diamidine 4',6-diamidino-2-phenylindole dihydrochloride was much delayed in live KO-B48 cells and insensitive to competition with up to 10 muM pentamidine. No overexpression of the Trypanosoma brucei brucei ATP-binding cassette transporter TbMRPA could be detected in KO-B48. We also show that a laboratory line of Trypanosoma brucei gambiense, adapted to high levels of resistance for the melaminophenyl arsenical drug melarsamine hydrochloride (Cymelarsan), had similarly lost TbAT1 and HAPT1 activity while retaining LAPT1 activity. It seems therefore that selection for resistance to either pentamidine or arsenical drugs can result in a similar phenotype of reduced drug accumulation, explaining the occurrence of cross-resistance.