924 resultados para calcium sulfate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in alkali-activated slag as a construction material is increasing, primarily due to its environmentally friendly nature. Although strong alkaline activators, such as sodium hydroxide and sodium silicate solution, are preferred for high strength, none of them exists naturally and their manufacturing process is quite energy intensive. Whilst sodium sulfate (NaSO ) can be obtained from natural resources, the early strength of NaSO activated slag is usually low. In this paper, the effects of slag fineness and NaSO dosage on strength, pH, hydration and microstructure were investigated and compared with those of a pure Portland cement (PC). Test results indicated that increasing the slag fineness is a more effective approach than increasing NaSO dosage for increasing both the early and long-term strength of NaSO activated slags. In addition, increasing the slag fineness can also increase the strength without increasing the pH of the hardened matrix, which is beneficial for immobilizing certain types of nuclear waste containing reactive metals and resins.© 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation of calcium carbonate in water has been examined using a combination of molecular dynamics and umbrella sampling. During 20 ns molecular dynamics trajectories at elevated calcium carbonate concentrations, amorphous particles are observed to form and appear to be composed of misaligned domains of vaterite and aragonite. The addition of further calcium ions to these clusters is found to be energetically favorable and virtually barrierless. By contrast, there is a large barrier to the addition of calcium to small calcite crystals. Thus, even though calcite nanocrystals are stable in solution, at high supersaturations, particles of amorphous material form because this material grows much faster than ordered calcite nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any no GO industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize actin-depolymerizing factor, ZmADF, binds both G- and F-actin and enhances in vitro actin dynamics. Evidence from studies on vertebrate ADF/cofilin supports the view that this class of protein responds to intracellular and extracellular signals and causes actin reorganization. As a test to determine whether such signal-responsive pathways existed in plants, this study addressed the ability of maize ADF to be phosphorylated and the likely effects of such phosphorylation on its capacity to modulate actin dynamics. It is shown that maize ADF3 (ZmADF3) can be phosphorylated by a calcium-stimulated protein kinase present in a 40-70% ammonium sulphate fraction of a plant cell extract. Phosphorylation is shown to be on Ser6, which is only one of nine amino acids that are fully conserved among the ADF/cofilin proteins across distantly related species. In addition, an analogue of phosphorylated ZmADF3 created by mutating Ser6 to Asp6 (zmadf3-4) does not bind G- or F-actin and has little effect on the enhancement of actin dynamics. These results are discussed in context of the previously observed actin reorganization in root hair cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common liver fluke, Fasciola hepatica, is a parasite of mammals. In the western world its effects are largely felt on agriculture where infection of cows, sheep and other farm animals is estimated to cause millions of dollars ofif financial losses. In the developing world, the problem is even more serious with an estimated 7 million infected people and many millions more at risk of infection. Calcium signalling is of key importance in all eukaryotic species and recent discoveries of novel types of calcium binding proteins in liver flukes (and related trematodes) suggest that there may be calcium signalling processes which are unique to this group of organisms. If so, these pathways may provide potential targets for the design of novel anthelmintic drugs. Here, we review three main groups of F. hepatica calcium binding proteins: the FH8 family, the calmodulin family (FhCaM1, FhCaM2 and FhCaM3) and the EF-hand/dynein light chain family (FH22, FhCaBP3, FhCaBP4). Considerable information has been gathered on the sequences, predicted structures and biochemical properties of these molecules. The challenge now is to understand their functions in the organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride is the most severe form of deterioration experienced by concrete and one of the principal sources of chlorides is sea water. However, the presence of sulfates in seawater will influence the movement of chloride ions and vice versa. This interaction is not well understood and current codes of practice provide no guidelines for such dual exposure.
An investigation to monitor combined effect of the ingress of chlorides and sulfates during a realistic 12 month wetting and drying exposure regime to simulate conditions in which multiple mode transport mechanisms are active was conducted on a variety of binders (PC, PFA and GGBS). Penetration was evaluated using water and acid soluble chloride profiles and sulfate profiles.
It was found that the nature of the exposure provided multiple modes of transport within the concrete, thus creating a complex pattern of distribution of ions. The presence of sulfates decreased the penetration of chlorides in the PC system at all ages relative to a chloride only control. The matrices containing PFA and GGBS also showed an initial decrease in chloride penetration. However, after six months the presence of sulfates then increased chloride penetration.