936 resultados para brain network


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Social network technologies, as we know them today have become a popular feature of everyday life for many people. As their name suggests, their underlying premise is to enable people to connect with each other for a variety of purposes. These purposes however, are generally thought of in a positive fashion. Based on a multi-method study of two online environments, Habbo Hotel and Second Life, which incorporate social networking functionality, we she light on forms of what can be conceptualized as antisocial behaviours and the rationales for these. Such behaviours included: scamming, racist/homophobic attacks, sim attacks, avatar attacks, non-conformance to contextual norms, counterfeiting and unneighbourly behaviour. The rationales for sub behaviours included: profit, fun, status building, network disruption, accidental acts and prejudice. Through our analysis we are able to comment upon the difficulties of defining antisocial behaviour in such environments, particularly when such environments are subject to interpretation vis their use and expected norms. We also point to the problems we face in conducting our public and private lives given the role ICTs are playing in the convergence of these two spaces and also the convergence of ICTs themselves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a case study for the application of a Linear Engineering Asset Renewal decision support software tool (LinEAR) at a water distribution network in Australia. This case study examines how the LinEAR can assist water utilities to minimise their total pipeline management cost, to make a long-term budget based on mathematically predicted expenditure, and to present calculated evidence for supporting their expenditure requirements. The outcomes from the study on pipeline renewal decision support demonstrate that LinEAR can help water utilities to improve the decision process and save renewal costs over a long-term by providing an optimum renewal schedules. This software can help organisation to accumulate technical knowledge and prediction future impact of the decision using what-if analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces advanced Demand Response algorithms for residential appliances to provide benefits for both utility and customers. The algorithms are engaged in scheduling appliances appropriately in a critical peak day to alleviate network peak, adverse voltage conditions and wholesale price spikes also reducing the cost of residential energy consumption. Initially, a demand response technique via customer reward is proposed, where the utility controls appliances to achieve network improvement. Then, an improved real-time pricing scheme is introduced and customers are supported by energy management schedulers to actively participate in it. Finally, the demand response algorithm is improved to provide frequency regulation services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotionally arousing events can distort our sense of time. We used mixed block/event-related fMRI design to establish the neural basis for this effect. Nineteen participants were asked to judge whether angry, happy and neutral facial expressions that varied in duration (from 400 to 1,600 ms) were closer in duration to either a short or long duration they learnt previously. Time was overestimated for both angry and happy expressions compared to neutral expressions. For faces presented for 700 ms, facial emotion modulated activity in regions of the timing network Wiener et al. (NeuroImage 49(2):1728–1740, 2010) namely the right supplementary motor area (SMA) and the junction of the right inferior frontal gyrus and anterior insula (IFG/AI). Reaction times were slowest when faces were displayed for 700 ms indicating increased decision making difficulty. Taken together with existing electrophysiological evidence Ng et al. (Neuroscience, doi: 10.3389/fnint.2011.00077, 2011), the effects are consistent with the idea that facial emotion moderates temporal decision making and that the right SMA and right IFG/AI are key neural structures responsible for this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stop-signal paradigm is increasingly being used as a probe of response inhibition in basic and clinical neuroimaging research. The critical feature of this task is that a cued response is countermanded by a secondary ‘stop-signal’ stimulus offset from the first by a ‘stop-signal delay’. Here we explored the role of task difficulty in the stop-signal task with the hypothesis that what is critical for successful inhibition is the time available for stopping, that we define as the difference between stop-signal onset and the expected response time (approximated by reaction time from previous trial). We also used functional magnetic resonance imaging (fMRI) to examine how the time available for stopping affects activity in the putative right inferior frontal gyrus and presupplementary motor area (right IFG-preSMA) network that is known to support stopping. While undergoing fMRI scanning, participants performed a stop-signal variant where the time available for stopping was kept approximately constant across participants, which enabled us to compare how the time available for stopping affected stop-signal task difficulty both within and between subjects. Importantly, all behavioural and neuroimaging data were consistent with previous findings. We found that the time available for stopping distinguished successful from unsuccessful inhibition trials, was independent of stop-signal delay, and affected successful inhibition depending upon individual SSRT. We also found that right IFG and adjacent anterior insula were more strongly activated during more difficult stopping. These findings may have critical implications for stop-signal studies that compare different patient or other groups using fixed stop-signal delays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because moving depictions of face emotion have greater ecological validity than their static counterparts, it has been suggested that still photographs may not engage ‘authentic’ mechanisms used to recognize facial expressions in everyday life. To date, however, no neuroimaging studies have adequately addressed the question of whether the processing of static and dynamic expressions rely upon different brain substrates. To address this, we performed an functional magnetic resonance imaging (fMRI) experiment wherein participants made emotional expression discrimination and Sex discrimination judgements to static and moving face images. Compared to Sex discrimination, Emotion discrimination was associated with widespread increased activation in regions of occipito-temporal, parietal and frontal cortex. These regions were activated both by moving and by static emotional stimuli, indicating a general role in the interpretation of emotion. However, portions of the inferior frontal gyri and supplementary/pre-supplementary motor area showed task by motion interaction. These regions were most active during emotion judgements to static faces. Our results demonstrate a common neural substrate for recognizing static and moving facial expressions, but suggest a role for the inferior frontal gyrus in supporting simulation processes that are invoked more strongly to disambiguate static emotional cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Converging evidence from epidemiological, clinical and neuropsychological research suggests a link between cannabis use and increased risk of psychosis. Long-term cannabis use has also been related to deficit-like “negative” symptoms and cognitive impairment that resemble some of the clinical and cognitive features of schizophrenia. The current functional brain imaging study investigated the impact of a history of heavy cannabis use on impaired executive function in first-episode schizophrenia patients. Whilst performing the Tower of London task in a magnetic resonance imaging scanner, event-related blood oxygenation level-dependent (BOLD) brain activation was compared between four age and gender-matched groups: 12 first-episode schizophrenia patients; 17 long-term cannabis users; seven cannabis using first-episode schizophrenia patients; and 17 healthy control subjects. BOLD activation was assessed as a function of increasing task difficulty within and between groups as well as the main effects of cannabis use and the diagnosis of schizophrenia. Cannabis users and non-drug using first-episode schizophrenia patients exhibited equivalently reduced dorsolateral prefrontal activation in response to task difficulty. A trend towards additional prefrontal and left superior parietal cortical activation deficits was observed in cannabis-using first-episode schizophrenia patients while a history of cannabis use accounted for increased activation in the visual cortex. Cannabis users and schizophrenia patients fail to adequately activate the dorsolateral prefrontal cortex, thus pointing to a common working memory impairment which is particularly evident in cannabis-using first-episode schizophrenia patients. A history of heavy cannabis use, on the other hand, accounted for increased primary visual processing, suggesting compensatory imagery processing of the task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The network reconfiguration is an important stage of restoring a power system after a complete blackout or a local outage. Reasonable planning of the network reconfiguration procedure is essential for rapidly restoring the power system concerned. An approach for evaluating the importance of a line is first proposed based on the line contraction concept. Then, the interpretative structural modeling (ISM) is employed to analyze the relationship among the factors having impacts on the network reconfiguration. The security and speediness of restoring generating units are considered with priority, and a method is next proposed to select the generating unit to be restored by maximizing the restoration benefit with both the generation capacity of the restored generating unit and the importance of the line in the restoration path considered. Both the start-up sequence of generating units and the related restoration paths are optimized together in the proposed method, and in this way the shortcomings of separately solving these two issues in the existing methods are avoided. Finally, the New England 10-unit 39-bus power system and the Guangdong power system in South China are employed to demonstrate the basic features of the proposed method.