963 resultados para biological nitrogen fixation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La caracterización de los cultivos cubierta (cover crops) puede permitir comparar la idoneidad de diferentes especies para proporcionar servicios ecológicos como el control de la erosión, el reciclado de nutrientes o la producción de forrajes. En este trabajo se estudiaron bajo condiciones de campo diferentes técnicas para caracterizar el dosel vegetal con objeto de establecer una metodología para medir y comparar las arquitecturas de los cultivos cubierta más comunes. Se estableció un ensayo de campo en Madrid (España central) para determinar la relación entre el índice de área foliar (LAI) y la cobertura del suelo (GC) para un cultivo de gramínea, uno de leguminosa y uno de crucífera. Para ello se sembraron doce parcelas con cebada (Hordeum vulgare L.), veza (Vicia sativa L.), y colza (Brassica napus L.). En 10 fechas de muestreo se midieron el LAI (con estimaciones directas y del LAI-2000), la fracción interceptada de la radiación fotosintéticamente activa (FIPAR) y la GC. Un experimento de campo de dos años (Octubre-Abril) se estableció en la misma localización para evaluar diferentes especies (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) y cultivares (20) en relación con su idoneidad para ser usadas como cultivos cubierta. La GC se monitorizó mediante análisis de imágenes digitales con 21 y 22 muestreos, y la biomasa se midió 8 y 10 veces, respectivamente para cada año. Un modelo de Gompertz caracterizó la cobertura del suelo hasta el decaimiento observado tras las heladas, mientras que la biomasa se ajustó a ecuaciones de Gompertz, logísticas y lineales-exponenciales. Al final del experimento se determinaron el C, el N y el contenido en fibra (neutrodetergente, ácidodetergente y lignina), así como el N fijado por las leguminosas. Se aplicó el análisis de decisión multicriterio (MCDA) con objeto de obtener un ranking de especies y cultivares de acuerdo con su idoneidad para actuar como cultivos cubierta en cuatro modalidades diferentes: cultivo de cobertura, cultivo captura, abono verde y forraje. Las asociaciones de cultivos leguminosas con no leguminosas pueden afectar al crecimiento radicular y a la absorción de N de ambos componentes de la mezcla. El conocimiento de cómo los sistemas radiculares específicos afectan al crecimiento individual de las especies es útil para entender las interacciones en las asociaciones, así como para planificar estrategias de cultivos cubierta. En un tercer ensayo se combinaron estudios en rhizotrones con extracción de raíces e identificación de especies por microscopía, así como con estudios de crecimiento, absorción de N y 15N en capas profundas del suelo. Las interacciones entre raíces en su crecimiento y en el aprovisionamiento de N se estudiaron para dos de los cultivares mejor valorados en el estudio previo: uno de cebada (Hordeum vulgare L. cv. Hispanic) y otro de veza (Vicia sativa L. cv. Aitana). Se añadió N en dosis de 0 (N0), 50 (N1) y 150 (N2) kg N ha-1. Como resultados del primer estudio, se ajustaron correctamente modelos lineales y cuadráticos a la relación entre la GC y el LAI para todos los cultivos, pero en la gramínea alcanzaron una meseta para un LAI>4. Antes de alcanzar la cobertura total, la pendiente de la relación lineal entre ambas variables se situó en un rango entre 0.025 y 0.030. Las lecturas del LAI-2000 estuvieron correlacionadas linealmente con el LAI, aunque con tendencia a la sobreestimación. Las correcciones basadas en el efecto de aglutinación redujeron el error cuadrático medio del LAI estimado por el LAI-2000 desde 1.2 hasta 0.5 para la crucífera y la leguminosa, no siendo efectivas para la cebada. Esto determinó que para los siguientes estudios se midieran únicamente la GC y la biomasa. En el segundo experimento, las gramíneas alcanzaron la mayor cobertura del suelo (83-99%) y la mayor biomasa (1226-1928 g m-2) al final del mismo. Con la mayor relación C/N (27-39) y contenido en fibra digestible (53-60%) y la menor calidad de residuo (~68%). La mostaza presentó elevadas GC, biomasa y absorción de N en el año más templado en similitud con las gramíneas, aunque escasa calidad como forraje en ambos años. La veza presentó la menor absorción de N (2.4-0.7 g N m-2) debido a la fijación de N (9.8-1.6 g N m-2) y escasa acumulación de N. El tiempo térmico hasta alcanzar el 30% de GC constituyó un buen indicador de especies de rápida cubrición. La cuantificación de las variables permitió hallar variabilidad entre las especies y proporcionó información para posteriores decisiones sobre la selección y manejo de los cultivos cubierta. La agregación de dichas variables a través de funciones de utilidad permitió confeccionar rankings de especies y cultivares para cada uso. Las gramíneas fueron las más indicadas para los usos de cultivo de cobertura, cultivo captura y forraje, mientras que las vezas fueron las mejor como abono verde. La mostaza alcanzó altos valores como cultivo de cobertura y captura en el primer año, pero el segundo decayó debido a su pobre actuación en los inviernos fríos. Hispanic fue el mejor cultivar de cebada como cultivo de cobertura y captura, mientras que Albacete como forraje. El triticale Titania alcanzó la posición más alta como cultiva de cobertura, captura y forraje. Las vezas Aitana y BGE014897 mostraron buenas aptitudes como abono verde y cultivo captura. El MCDA permitió la comparación entre especies y cultivares proporcionando información relevante para la selección y manejo de cultivos cubierta. En el estudio en rhizotrones tanto la mezcla de especies como la cebada alcanzaron mayor intensidad de raíces (RI) y profundidad (RD) que la veza, con valores alrededor de 150 cruces m-1 y 1.4 m respectivamente, comparados con 50 cruces m-1 y 0.9 m para la veza. En las capas más profundas del suelo, la asociación de cultivos mostró valores de RI ligeramente mayores que la cebada en monocultivo. La cebada y la asociación obtuvieron mayores valores de densidad de raíces (RLD) (200-600 m m-3) que la veza (25-130) entre 0.8 y 1.2 m de profundidad. Los niveles de N no mostraron efectos claros en RI, RD ó RLD, sin embargo, el incremento de N favoreció la proliferación de raíces de veza en la asociación en capas profundas del suelo, con un ratio cebada/veza situado entre 25 a N0 y 5 a N2. La absorción de N de la cebada se incrementó en la asociación a expensas de la veza (de ~100 a 200 mg planta-1). Las raíces de cebada en la asociación absorbieron también más nitrógeno marcado de las capas profundas del suelo (0.6 mg 15N planta-1) que en el monocultivo (0.3 mg 15N planta-1). ABSTRACT Cover crop characterization may allow comparing the suitability of different species to provide ecological services such as erosion control, nutrient recycling or fodder production. Different techniques to characterize plant canopy were studied under field conditions in order to establish a methodology for measuring and comparing cover crops canopies. A field trial was established in Madrid (central Spain) to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. A two-year field experiment (October-April) was established in the same location to evaluate different species (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars (20) according to their suitability to be used as cover crops. GC was monitored through digital image analysis with 21 and 22 samples, and biomass measured 8 and 10 times, respectively for each season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment C, N, and fiber (neutral detergent, acid and lignin) contents, and the N fixed by the legumes were determined. Multicriteria decision analysis (MCDA) was applied in order to rank the species and cultivars according to their suitability to perform as cover crops in four different modalities: cover crop, catch crop, green manure and fodder. Intercropping legumes and non-legumes may affect the root growth and N uptake of both components in the mixture. The knowledge of how specific root systems affect the growth of the individual species is useful for understanding the interactions in intercrops as well as for planning cover cropping strategies. In a third trial rhizotron studies were combined with root extraction and species identification by microscopy and with studies of growth, N uptake and 15N uptake from deeper soil layers. The root interactions of root growth and N foraging were studied for two of the best ranked cultivars in the previous study: a barley (Hordeum vulgare L. cv. Hispanic) and a vetch (Vicia sativa L. cv. Aitana). N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha-1. As a result, linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI > 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley. This determined that in the following studies only the GC and biomass were measured. In the second experiment, the grasses reached the highest ground cover (83- 99%) and biomass (1226-1928 g/m2) at the end of the experiment. The grasses had the highest C/N ratio (27-39) and dietary fiber (53-60%) and the lowest residue quality (~68%). The mustard presented high GC, biomass and N uptake in the warmer year with similarity to grasses, but low fodder capability in both years. The vetch presented the lowest N uptake (2.4-0.7 g N/m2) due to N fixation (9.8-1.6 g N/m2) and low biomass accumulation. The thermal time until reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crops selection and management. Aggregation of these variables through utility functions allowed ranking species and cultivars for each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while the vetches were the best as green manures. The mustard attained high ranks as cover and catch crop the first season, but the second decayed due to low performance in cold winters. Hispanic was the most suitable barley cultivar as cover and catch crop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop and fodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. MCDA allowed comparison among species and cultivars and might provide relevant information for cover crops selection and management. In the rhizotron study the intercrop and the barley attained slightly higher root intensity (RI) and root depth (RD) than the vetch, with values around 150 crosses m-1 and 1.4 m respectively, compared to 50 crosses m-1 and 0.9 m for the vetch. At deep soil layers, intercropping showed slightly larger RI values compared to the sole cropped barley. The barley and the intercropping had larger root length density (RLD) values (200-600 m m-3) than the vetch (25-130) at 0.8-1.2 m depth. The topsoil N supply did not show a clear effect on the RI, RD or RLD; however increasing topsoil N favored the proliferation of vetch roots in the intercropping at deep soil layers, with the barley/vetch root ratio ranging from 25 at N0 to 5 at N2. The N uptake of the barley was enhanced in the intercropping at the expense of the vetch (from ~100 mg plant-1 to 200). The intercropped barley roots took up more labeled nitrogen (0.6 mg 15N plant-1) than the sole-cropped barley roots (0.3 mg 15N plant-1) from deep layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was supported by a Grant from the Welsh Government (Glastir Monitoring and Evaluation Project—GMEP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper-zinc superoxide dismutase (Cu,ZnSOD) is the antioxidant enzyme that catalyzes the dismutation of superoxide (O2•−) to O2 and H2O2. In addition, Cu,ZnSOD also exhibits peroxidase activity in the presence of H2O2, leading to self-inactivation and formation of a potent enzyme-bound oxidant. We report in this study that lipid peroxidation of l-α-lecithin liposomes was enhanced greatly during the SOD/H2O2 reaction in the presence of nitrite anion (NO2−) with or without the metal ion chelator, diethylenetriaminepentacetic acid. The presence of NO2− also greatly enhanced α-tocopherol (α-TH) oxidation by SOD/H2O2 in saturated 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine liposomes. The major product identified by HPLC and UV-studies was α-tocopheryl quinone. When 1,2-diauroyl-sn-glycero-3-phosphatidylcholine liposomes containing γ-tocopherol (γ-TH) were incubated with SOD/H2O2/NO2−, the major product identified was 5-NO2-γ-TH. Nitrone spin traps significantly inhibited the formation of α-tocopheryl quinone and 5-NO2-γ-TH. NO2− inhibited H2O2-dependent inactivation of SOD. A proposed mechanism of this protection involves the oxidation of NO2− by an SOD-bound oxidant to the nitrogen dioxide radical (•NO2). In this study, we have shown a new mechanism of nitration catalyzed by the peroxidase activity of SOD. We conclude that NO2− is a suitable probe for investigating the peroxidase activity of familial Amyotrophic Lateral Sclerosis-linked SOD mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PII is a protein allosteric effector in Escherichia coli and other bacteria that indirectly regulates glutamine synthetase at the transcriptional and post-translational levels in response to nitrogen availability. Data supporting the notion that plants have a nitrogen regulatory system(s) includes previous studies showing that the levels of mRNA for plant nitrogen assimilatory genes such as glutamine synthetase (GLN) and asparagine synthetase (ASN) are modulated by carbon and organic nitrogen metabolites. Here, we have characterized a PII homolog (GLB1) in two higher plants, Arabidopsis thaliana and Ricinus communis (Castor bean). Each plant PII-like protein has high overall identity to E. coli PII (50%). Western blot analyses reveal that the plant PII-like protein is a nuclear-encoded chloroplast protein. The PII-like protein of plants appears to be regulated at the transcriptional level in that levels of GLB1 mRNA are affected by light and metabolites. To initiate studies of the in vivo function of the Arabidopsis PII-like protein, we have constructed transgenic lines in which PII expression is uncoupled from its native regulation. Analyses of these transgenic plants support the notion that the plant PII-like protein may serve as part of a complex signal transduction network involved in perceiving the status of carbon and organic nitrogen. Thus, the PII protein found in archaea, bacteria, and now in higher eukaryotes (plants) is one of the most widespread regulatory proteins known, providing evidence for an ancestral metabolic regulatory mechanism that may have existed before the divergence of these three domains of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a goal of cancer chemotherapy to achieve the selective killing of tumor cells while minimizing toxicity to normal tissues. We describe the design of selective toxins forming DNA adducts that attract the estrogen receptor (ER), a transcription factor that is overexpressed in many human breast and ovarian tumors. The compounds consist of 4-(3-aminopropyl)-N,N-(2-chloroethyl)-aniline linked to 2-(4′-hydroxyphenyl)-3-methyl-5-hydroxy-indole. The former moiety is a DNA damaging nitrogen mustard and the latter is a ligand for the ER. The connection between these groups was refined to permit DNA adducts formed by the mustard portion of the molecule to present the ligand domain so that it was able to interact efficiently with the ER. By using 16-mers containing specific DNA adducts, it was determined that monoadducts and putative intrastrand crosslinks were preferred targets for the ER over interstrand crosslinks. A series of structurally related 2-phenylindole mustards was prepared, some of which were selectively toxic to the ER-positive breast cancer cell line MCF-7, as compared with the ER(−) negative line MDA-MB231. The ability both to bind to DNA and to interact significantly with the ER were essential to achieve selective lethality toward ER(+) cells. Compounds forming DNA adducts without the ability to bind receptor showed similar toxicities in the two cell lines. Several models could explain the selective toxicity of the mustard–phenylindole compounds toward ER(+) cells. The favored model suggests that a mustard–DNA adduct is shielded by the ER from DNA repair enzymes and hence cells possessing an abundance of the ER selectively retain the adduct and are killed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yeast nonchromosomal gene [URE3] is due to a prion form of the nitrogen regulatory protein Ure2p. It is a negative regulator of nitrogen catabolism and acts by inhibiting the transcription factor Gln3p. Ure2p residues 1–80 are necessary for prion generation and propagation. The C-terminal fragment retains nitrogen regulatory activity, albeit somewhat less efficiently than the full-length protein, and it also lowers the frequency of prion generation. The crystal structure of this C-terminal fragment, Ure2p(97–354), at 2.3 Å resolution is described here. It adopts the same fold as the glutathione S-transferase superfamily, consistent with their sequence similarity. However, Ure2p(97–354) lacks a properly positioned catalytic residue that is required for S-transferase activity. Residues within this regulatory fragment that have been indicated by mutational studies to influence prion generation have been mapped onto the three-dimensional structure, and possible implications for prion activity are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have spectroscopically determined breath ammonia levels in seven patients with end-stage renal disease while they were undergoing hemodialysis at the University of California, Los Angeles, dialysis center. We correlated these measurements against simultaneously taken blood samples that were analyzed for blood urea nitrogen (BUN) and creatinine, which are the accepted standards indicating the level of nitrogenous waste loading in a patient's bloodstream. Initial levels of breath ammonia, i.e., at the beginning of dialysis, are between 1,500 ppb and 2,000 ppb (parts per billion). These levels drop very sharply in the first 15–30 min as the dialysis proceeds. We found the reduction in breath ammonia concentration to be relatively slow from this point on to the end of dialysis treatment, at which point the levels tapered off at 150 to 200 ppb. For each breath ammonia measurement, taken at 15–30 min intervals during the dialysis, we also sampled the patient's blood for BUN and creatinine. The breath ammonia data were available in real time, whereas the BUN and creatinine data were available generally 24 h later from the laboratory. We found a good correlation between breath ammonia concentration and BUN and creatinine. For one of the patients, the correlation gave an R2 of 0.95 for breath ammonia and BUN correlation and an R2 of 0.83 for breath ammonia and creatinine correlation. These preliminary data indicate the possibility of using the real-time breath ammonia measurements for determining efficacy and endpoint of hemodialysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The target of rapamycin (Tor) proteins sense nutrients and control transcription and translation relevant to cell growth. Treating cells with the immunosuppressant rapamycin leads to the intracellular formation of an Fpr1p-rapamycin-Tor ternary complex that in turn leads to translational down-regulation. A more rapid effect is a rich transcriptional response resembling that when cells are shifted from high- to low-quality carbon or nitrogen sources. This transcriptional response is partly mediated by the nutrient-sensitive transcription factors GLN3 and NIL1 (also named GAT1). Here, we show that these GATA-type transcription factors control transcriptional responses that mediate translation by several means. Four observations highlight upstream roles of GATA-type transcription factors in translation. In their absence, processes caused by rapamycin or poor nutrients are diminished: translation repression, eIF4G protein loss, transcriptional down-regulation of proteins involved in translation, and RNA polymerase I/III activity repression. The Tor proteins preferentially use Gln3p or Nil1p to down-regulate translation in response to low-quality nitrogen or carbon, respectively. Functional consideration of the genes regulated by Gln3p or Nil1p reveals the logic of this differential regulation. Besides integrating control of transcription and translation, these transcription factors constitute branches downstream of the multichannel Tor proteins that can be selectively modulated in response to distinct (carbon- and nitrogen-based) nutrient signals from the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and immunological techniques were used to examine N2 fixation in a ubiquitous heterotrophic marine bacterium, the facultative anaerobic Vibrio natriegens. When batch cultures were shifted from aerobic N-replete to anaerobic N-deplete conditions, transcriptional and post-translational regulation of N2 fixation was observed. Levels of nifHDK mRNA encoding the nitrogenase enzyme were highest at 140 min postshift and undetectable between 6 and 9 h later. Immunologically determined levels of nitrogenase enzyme (Fe protein) were highest between 6 and 15 h postshift, and nitrogenase activity peaked between 6 and 9 h postshift, declining by a factor of 2 after 12-15 h. Unlike their regulation in cyanobacteria, Fe protein and nitrogenase activity were present when nifHDK mRNA was absent in V. natriegens, indicating that nitrogenase is stored and stable under anaerobic conditions. Both nifHDK mRNA and Fe protein disappeared within 40 min after cultures were shifted from N2-fixing conditions (anaerobic, N-deplete) to non- N2-fixing conditions (aerobic, N-enriched) but reappeared when shifted to conditions favoring N2 fixation. Thus, unlike other N2-fixing heterotrophic bacteria, nitrogenase must be resynthesized after aerobic exposure in V. natriegens. Immunological detection based on immunoblot (Western) analysis and immunogold labeling correlated positively with nitrogenase activity; no localization of nitrogenase was observed. Because V. natriegens continues to fix N2 for many hours after anaerobic induction, this species may play an important role in providing "new" nitrogen in marine ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known about the processes that control the flux attenuation within the upper twilight zone. Here, we present results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period. The entire study area, of approximately 8000 km**2, showed similar vertical export fluxes in spite of the heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between production and export. The POC fluxes at 100 m were high, averaging 26 ± 15 mmol C/m**2/d, although the strength of the biological pump was generally low. Only <20% of the daily primary production reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indicated that direct sinking of diatoms likely caused the high POC transfer efficiencies (~60%) observed between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical migration might have also contributed to downward fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycorthizae play a critical role in nutrient capture from soils. Arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) are the most important mycorrhizae in agricultural and natural ecosystems. AM and EM fungi use inorganic NH4+ and NO3-, and most EM fungi are capable of using organic nitrogen. The heavier stable isotope N-15 is discriminated against during biogeochemical and biochemical processes. Differences in N-15 (atom%) or delta(15)N (parts per thousand) provide nitrogen movement information in an experimental system. A range of 20 to 50% of one-way N-transfer has been observed from legumes to nonlegumes. Mycorrhizal fungal mycelia can extend from one plant's roots to another plant's roots to form common mycorrhizal networks (CMNs). Individual species, genera, even families of plants can be interconnected by CMNs. They are capable of facilitating nutrient uptake and flux. Nutrients such as carbon, nitrogen and phosphorus and other elements may then move via either AM or EM networks from plant to plant. Both N-15 labeling and N-15 natural abundance techniques have been employed to trace N movement between plants interconnected by AM or EM networks. Fine mesh (25similar to45 mum) has been used to separate root systems and allow only hyphal penetration and linkages but no root contact between plants. In many studies, nitrogen from N-2-fixing mycorrhizal plants transferred to non-N-2-fixing mycorrhizal plants (one-way N-transfer). In a few studies, N is also transferred from non-N-2-fixing mycorrhizal plants to N-2-fixing mycorrhizal plants (two-way N-transfer). There is controversy about whether N-transfer is direct through CMNs, or indirect through the soil. The lack of convincing data underlines the need for creative, careful experimental manipulations. Nitrogen is crucial to productivity in most terrestrial ecosystems, and there are potential benefits of management in soil-plant systems to enhance N-transfer. Thus, two-way N-transfer warrants further investigation with many species and under field conditions.