935 resultados para automatic summarization
Resumo:
This paper reports on the further results of the ongoing research analyzing the impact of a range of commonly used statistical and semantic features in the context of extractive text summarization. The features experimented with include word frequency, inverse sentence and term frequencies, stopwords filtering, word senses, resolved anaphora and textual entailment. The obtained results demonstrate the relative importance of each feature and the limitations of the tools available. It has been shown that the inverse sentence frequency combined with the term frequency yields almost the same results as the latter combined with stopwords filtering that in its turn proved to be a highly competitive baseline. To improve the suboptimal results of anaphora resolution, the system was extended with the second anaphora resolution module. The present paper also describes the first attempts of the internal document data representation.
Resumo:
Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.
Resumo:
El reciente crecimiento masivo de medios on-line y el incremento de los contenidos generados por los usuarios (por ejemplo, weblogs, Twitter, Facebook) plantea retos en el acceso e interpretación de datos multilingües de manera eficiente, rápida y asequible. El objetivo del proyecto TredMiner es desarrollar métodos innovadores, portables, de código abierto y que funcionen en tiempo real para generación de resúmenes y minería cross-lingüe de medios sociales a gran escala. Los resultados se están validando en tres casos de uso: soporte a la decisión en el dominio financiero (con analistas, empresarios, reguladores y economistas), monitorización y análisis político (con periodistas, economistas y políticos) y monitorización de medios sociales sobre salud con el fin de detectar información sobre efectos adversos a medicamentos.
Resumo:
This paper addresses the problem of the automatic recognition and classification of temporal expressions and events in human language. Efficacy in these tasks is crucial if the broader task of temporal information processing is to be successfully performed. We analyze whether the application of semantic knowledge to these tasks improves the performance of current approaches. We therefore present and evaluate a data-driven approach as part of a system: TIPSem. Our approach uses lexical semantics and semantic roles as additional information to extend classical approaches which are principally based on morphosyntax. The results obtained for English show that semantic knowledge aids in temporal expression and event recognition, achieving an error reduction of 59% and 21%, while in classification the contribution is limited. From the analysis of the results it may be concluded that the application of semantic knowledge leads to more general models and aids in the recognition of temporal entities that are ambiguous at shallower language analysis levels. We also discovered that lexical semantics and semantic roles have complementary advantages, and that it is useful to combine them. Finally, we carried out the same analysis for Spanish. The results obtained show comparable advantages. This supports the hypothesis that applying the proposed semantic knowledge may be useful for different languages.
Resumo:
One of the main challenges to be addressed in text summarization concerns the detection of redundant information. This paper presents a detailed analysis of three methods for achieving such goal. The proposed methods rely on different levels of language analysis: lexical, syntactic and semantic. Moreover, they are also analyzed for detecting relevance in texts. The results show that semantic-based methods are able to detect up to 90% of redundancy, compared to only the 19% of lexical-based ones. This is also reflected in the quality of the generated summaries, obtaining better summaries when employing syntactic- or semantic-based approaches to remove redundancy.
Resumo:
The free hardware platforms have become very important in engineering education in recent years. Among these platforms, Arduino highlights, characterized by its versatility, popularity and low price. This paper describes the implementation of four laboratory experiments for Automatic Control and Robotics courses at the University of Alicante, which have been developed based on Arduino and other existing equipment. Results were evaluated taking into account the views of students, concluding that the proposed experiments have been attractive to them, and they have acquired the knowledge about hardware configuration and programming that was intended.
Resumo:
Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.
Resumo:
by W. Jett Lauck and Edgar Sydenstricker.