980 resultados para attributed graphs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A weighted Bethe graph $B$ is obtained from a weighted generalized Bethe tree by identifying each set of children with the vertices of a graph belonging to a family $F$ of graphs. The operation of identifying the root vertex of each of $r$ weighted Bethe graphs to the vertices of a connected graph $\mathcal{R}$ of order $r$ is introduced as the $\mathcal{R}$-concatenation of a family of $r$ weighted Bethe graphs. It is shown that the Laplacian eigenvalues (when $F$ has arbitrary graphs) as well as the signless Laplacian and adjacency eigenvalues (when the graphs in $F$ are all regular) of the $\mathcal{R}$-concatenation of a family of weighted Bethe graphs can be computed (in a unified way) using the stable and low computational cost methods available for the determination of the eigenvalues of symmetric tridiagonal matrices. Unlike the previous results already obtained on this topic, the more general context of families of distinct weighted Bethe graphs is herein considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy of a symmetric matrix is the sum of the absolute values of its eigenvalues. We introduce a lower bound for the energy of a symmetric partitioned matrix into blocks. This bound is related to the spectrum of its quotient matrix. Furthermore, we study necessary conditions for the equality. Applications to the energy of the generalized composition of a family of arbitrary graphs are obtained. A lower bound for the energy of a graph with a bridge is given. Some computational experiments are presented in order to show that, in some cases, the obtained lower bound is incomparable with the well known lower bound $2\sqrt{m}$, where $m$ is the number of edges of the graph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The premise of automated alert correlation is to accept that false alerts from a low level intrusion detection system are inevitable and use attack models to explain the output in an understandable way. Several algorithms exist for this purpose which use attack graphs to model the ways in which attacks can be combined. These algorithms can be classified in to two broad categories namely scenario-graph approaches, which create an attack model starting from a vulnerability assessment and type-graph approaches which rely on an abstract model of the relations between attack types. Some research in to improving the efficiency of type-graph correlation has been carried out but this research has ignored the hypothesizing of missing alerts. Our work is to present a novel type-graph algorithm which unifies correlation and hypothesizing in to a single operation. Our experimental results indicate that the approach is extremely efficient in the face of intensive alerts and produces compact output graphs comparable to other techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we survey results on distance magic graphs and some closely related graphs. A distance magic labeling of a graph G with magic constant k is a bijection l from the vertex set to {1, 2, . . . , n}, such that for every vertex x Σ l(y) = k,y∈NG(x) where NG(x) is the set of vertices of G adjacent to x. If the graph G has a distance magic labeling we say that G is a distance magic graph. In Chapter 1, we explore the background of distance magic graphs by introducing examples of magic squares, magic graphs, and distance magic graphs. In Chapter 2, we begin by examining some basic results on distance magic graphs. We next look at results on different graph structures including regular graphs, multipartite graphs, graph products, join graphs, and splitting graphs. We conclude with other perspectives on distance magic graphs including embedding theorems, the matrix representation of distance magic graphs, lifted magic rectangles, and distance magic constants. In Chapter 3, we study graph labelings that retain the same labels as distance magic labelings, but alter the definition in some other way. These labelings include balanced distance magic labelings, closed distance magic labelings, D-distance magic labelings, and distance antimagic labelings. In Chapter 4, we examine results on neighborhood magic labelings, group distance magic labelings, and group distance antimagic labelings. These graph labelings change the label set, but are otherwise similar to distance magic graphs. In Chapter 5, we examine some applications of distance magic and distance antimagic labeling to the fair scheduling of tournaments. In Chapter 6, we conclude with some open problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a new family of graph kernels where the graph structure is probed by means of a discrete-time quantum walk. Given a pair of graphs, we let a quantum walk evolve on each graph and compute a density matrix with each walk. With the density matrices for the pair of graphs to hand, the kernel between the graphs is defined as the negative exponential of the quantum Jensen–Shannon divergence between their density matrices. In order to cope with large graph structures, we propose to construct a sparser version of the original graphs using the simplification method introduced in Qiu and Hancock (2007). To this end, we compute the minimum spanning tree over the commute time matrix of a graph. This spanning tree representation minimizes the number of edges of the original graph while preserving most of its structural information. The kernel between two graphs is then computed on their respective minimum spanning trees. We evaluate the performance of the proposed kernels on several standard graph datasets and we demonstrate their effectiveness and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random Walk with Restart (RWR) is an appealing measure of proximity between nodes based on graph structures. Since real graphs are often large and subject to minor changes, it is prohibitively expensive to recompute proximities from scratch. Previous methods use LU decomposition and degree reordering heuristics, entailing O(|V|^3) time and O(|V|^2) memory to compute all (|V|^2) pairs of node proximities in a static graph. In this paper, a dynamic scheme to assess RWR proximities is proposed: (1) For unit update, we characterize the changes to all-pairs proximities as the outer product of two vectors. We notice that the multiplication of an RWR matrix and its transition matrix, unlike traditional matrix multiplications, is commutative. This can greatly reduce the computation of all-pairs proximities from O(|V|^3) to O(|delta|) time for each update without loss of accuracy, where |delta| (<<|V|^2) is the number of affected proximities. (2) To avoid O(|V|^2) memory for all pairs of outputs, we also devise efficient partitioning techniques for our dynamic model, which can compute all pairs of proximities segment-wisely within O(l|V|) memory and O(|V|/l) I/O costs, where 1<=l<=|V| is a user-controlled trade-off between memory and I/O costs. (3) For bulk updates, we also devise aggregation and hashing methods, which can discard many unnecessary updates further and handle chunks of unit updates simultaneously. Our experimental results on various datasets demonstrate that our methods can be 1–2 orders of magnitude faster than other competitors while securing scalability and exactness.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some estimates of the time of convergence to the equilibrium distribution in autonomous and periodic non-autonomous graphs, with ergodic stochastic adjacency matrices, using the eigenvalues of these matrices. On this way we generalize previous results from several authors, that only considered reversible matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistent homology is a branch of computational topology which uses geometry and topology for shape description and analysis. This dissertation is an introductory study to link persistent homology and graph theory, the connection being represented by various methods to build simplicial complexes from a graph. The methods we consider are the complex of cliques, of independent sets, of neighbours, of enclaveless sets and complexes from acyclic subgraphs, each revealing several properties of the underlying graph. Moreover, we apply the core ideas of persistence theory in the new context of graph theory, we define the persistent block number and the persistent edge-block number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the real-world dataset, including textual data, can be represented using graph structures. The use of graphs to represent textual data has many advantages, mainly related to maintaining a more significant amount of information, such as the relationships between words and their types. In recent years, many neural network architectures have been proposed to deal with tasks on graphs. Many of them consider only node features, ignoring or not giving the proper relevance to relationships between them. However, in many node classification tasks, they play a fundamental role. This thesis aims to analyze the main GNNs, evaluate their advantages and disadvantages, propose an innovative solution considered as an extension of GAT, and apply them to a case study in the biomedical field. We propose the reference GNNs, implemented with methodologies later analyzed, and then applied to a question answering system in the biomedical field as a replacement for the pre-existing GNN. We attempt to obtain better results by using models that can accept as input both node and edge features. As shown later, our proposed models can beat the original solution and define the state-of-the-art for the task under analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective in this thesis is to study the pseudo-metric and topological structure of the space of group equivariant non-expansive operators (GENEOs). We introduce the notions of compactification of a perception pair, collectionwise surjectivity, and compactification of a space of GENEOs. We obtain some compactification results for perception pairs and the space of GENEOs. We show that when the data spaces are totally bounded and endow the common domains with metric structures, the perception pairs and every collectionwise surjective space of GENEOs can be embedded isometrically into the compact ones through compatible embeddings. An important part of the study of topology of the space of GENEOs is to populate it in a rich manner. We introduce the notion of a generalized permutant and show that this concept too, like that of a permutant, is useful in defining new GENEOs. We define the analogues of some of the aforementioned concepts in a graph theoretic setting, enabling us to use the power of the theory of GENEOs for the study of graphs in an efficient way. We define the notions of a graph perception pair, graph permutant, and a graph GENEO. We develop two models for the theory of graph GENEOs. The first model addresses the case of graphs having weights assigned to their vertices, while the second one addresses weighted on the edges. We prove some new results in the proposed theory of graph GENEOs and exhibit the power of our models by describing their applications to the structural study of simple graphs. We introduce the concept of a graph permutant and show that this concept can be used to define new graph GENEOs between distinct graph perception pairs, thereby enabling us to populate the space of graph GENEOs in a rich manner and shed more light on its structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo lavoro estendiamo concetti classici della geometria Riemanniana al fine di risolvere le equazioni di Maxwell sul gruppo delle permutazioni $S_3$. Cominciamo dando la strutture algebriche di base e la definizione di calcolo differenziale quantico con le principali proprietà. Generalizziamo poi concetti della geometria Riemanniana, quali la metrica e l'algebra esterna, al caso quantico. Tutto ciò viene poi applicato ai grafi dando la forma esplicita del calcolo differenziale quantico su $\mathbb{K}(V)$, della metrica e Laplaciano del secondo ordine e infine dell'algebra esterna. A questo punto, riscriviamo le equazioni di Maxwell in forma geometrica compatta usando gli operatori e concetti della geometria differenziale su varietà che abbiamo generalizzato in precedenza. In questo modo, considerando l'elettromagnetismo come teoria di gauge, possiamo risolvere le equazioni di Maxwell su gruppi finiti oltre che su varietà differenziabili. In particolare, noi le risolviamo su $S_3$.