980 resultados para ash deposit
Resumo:
The spatial patterns of diffuse, primitive, classic (cored) and compact (burnt-out) subtypes of beta/A4 deposits were studied in coronal sections of the frontal lobe and hippocampus, including the adjacent gyri, in nine cases of Alzheimer's disease (AD). If the more mature deposits were derived from the diffuse deposits then there should be a close association between their spatial patterns in a brain region. In the majority of tissues examined, all deposit subtypes occurred in clusters which varied in dimension from 200 to 6400 microns. In many tissues, the clusters appeared to be regularly spaced parallel to the pia or alveus. The mean dimension of the primitive deposit clusters was greater than those of the diffuse, classic and compact types. In about 60% of cortical tissues examined, the clusters of primitive and diffuse deposits were not in phase, i.e. they alternated along the cortical strip. Clusters of classic deposits appeared to be distributed independently of the diffuse deposit clusters. Cluster size of the primitive deposits was positively correlated with the density of the primitive deposits in a tissue but no such relationship could be detected for the diffuse deposits. This study suggested that there was a complex relationship between the clusters of the different subtypes of beta/A4 deposits. If the diffuse deposits do give rise to the primitive and classic varieties then factors unrelated to the initial deposition of beta/A4 in the form of diffuse plaques were important in the formation of the mature deposits.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This research investigates specific ash control methods to limit inorganic content within biomass prior to fast pyrolysis and effect of specific ash components on fast pyrolysis processing, mass balance yields and bio-oil quality and stability. Inorganic content in miscanthus was naturally reduced over the winter period from June (7.36 wt. %) to February (2.80 wt. %) due to a combination of senescence and natural leaching from rain water. September harvest produced similar mass balance yields, bio-oil quality and stability compared to February harvest (conventional harvest), but nitrogen content in above ground crop was to high (208 kg ha.-1) to maintain sustainable crop production. Deionised water, 1.00% HCl and 0.10% Triton X-100 washes were used to reduce inorganic content of miscanthus. Miscanthus washed with 0.10% Triton X-100 resulted in the highest total liquid yield (76.21 wt. %) and lowest char and reaction water yields (9.77 wt. % and 8.25 wt. % respectively). Concentrations of Triton X-100 were varied to study further effects on mass balance yields and bio-oil stability. All concentrations of Triton X-100 increased total liquid yield and decreased char and reaction water yields compared to untreated miscanthus. In terms of bio-oil stability 1.00% Triton X-100 produced the most stable bio-oil with lowest viscosity index (2.43) and lowest water content index (1.01). Beech wood was impregnated with potassium and phosphorus resulting in lower liquid yields and increased char and gas yields due to their catalytic effect on fast pyrolysis product distribution. Increased potassium and phosphorus concentrations produced less stable bio-oils with viscosity and water content indexes increasing. Fast pyrolysis processing of phosphorus impregnated beech wood was problematic as the reactor bed material agglomerated into large clumps due to char formation within the reactor, affecting fluidisation and heat transfer.
Resumo:
The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.
Resumo:
This study concerns the Dublin Gulch intrusion-related gold system, Yukon Territory, Canada. Located 85 km, north northwest of the town of Mayo, YT, the property hosts a 3.3 M oz Au deposit associated with a mid-Cretaceous pluton. A detailed, 8 stage, hydrothermal paragenesis has been constructed for the deposit. At least two discrete fluids are responsible for sulfide mineralization at Dublin Gulch. The latter of the two hydrothermal fluids is responsible for the majority of Au endowment on the property. Geochemical signatures of mineralization support this finding, displaying distinct populations of arsenopyrite compositions and sulfur isotopes for each fluid. Lead isotopes from sulfosalts associated with the second fluid suggest hydrothermal scavenging from country rocks. Geochronology and petrogenetic studies show that a short lived intrusive event c. 93-94 Ma took place at Dublin Gulch and that the main Au mineralising fluid may be linked to a yet unseen intrusion at depth.
Resumo:
The Ming deposit, Newfoundland Appalachians, is a metamorphosed (upper greenschist to lower amphibolite facies), Cambro-Ordovician, bimodalmafic volcanogenic massive sulfide (VMS) deposit that consists of several, spatially-associated, elongated orebodies composed of stratabound semimassive to massive sulfides and/or discordant sulfide stringers in a rhyodacitic footwall. Copper is the main commodity; however, the deposit contains precious metal-bearing zones with elevated Au grades. In this study, field observations, microscopy, and micro-analytical tools including electron microprobe, laser ablation inductively coupled plasma mass spectrometry, and secondary ion mass spectrometry were used to constrain the relative timing of precious metal emplacement, the physico-chemical conditions of hydrothermal fluid precipitation, and the sources of sulfur, precious metals, semi-metals and metals. The ore mineral assemblage is complex and indicates an intermediate sulfidation state. Pyrite and chalcopyrite are the dominant ore minerals with minor sphalerite and pyrrhotite, and trace galena, arsenopyrite and cubanite. Additional trace phases include tellurides, NiSb phases, sulfosalts, electrum, AgHg±Au alloys, and oxides. Silver phases and precious metals occur predominantly in semi-massive and massive sulfides as free grains, and as grains spatially associated with arsenopyrite and/or sulfosalts. Precious metal phases occurring between recrystallized pyrite and within cataclastic pyrite are rare. Hence, the complex ore assemblage and textures strongly suggest syngenetic precious metal emplacement, whereas metamorphism and deformation only internally and locally remobilized precious metal phases. The ore assemblage formed from reduced, acidic hydrothermal fluids over a range of temperatures (≈350 to below 260ºC). The abundance of telluride and Ag-bearing tetrahedrite, however, varies strongly between the different orebodies indicating variable ƒTe₂, ƒSe₂, mBi, and mSb within the hydrothermal fluids. The variations in the concentrations of semi-metals and metals (As, Bi, Hg, Sb, Se, Te), as well as Au and Ag, were due to variations in temperature but also to a likely contribution of magmatic fluids into the VMS hydrothermal system from presumably different geothermal reservoirs. Sulfur isotope studies indicate at least two sulfur sources: sulfur from thermochemically-reduced seawater sulfate and igneous sulfur. The source of igneous sulfur is the igneous footwall, direct magmatic fluid/volatiles, or both. Upper greenschist to lower amphibolite metamorphic conditions and deformation had no significant effect on the sulfur isotope composition of the sulfides at the Ming deposit.
Resumo:
Five long piston cores collected from different subbasins of the Aegean Sea constitute the primary source of data for this PhD thesis. This study is the first to document a continuous paleoceanographic and paleoclimatic record of the Aegean Sea since the last interglacial. The chronostratigraphic reconstructions of the cored sediments based on organic carbon contents, stratigraphic position of known ash layers and oxygen isotopic curve matching collectively demonstrate the presence of sapropel S1 and MISS sapropels S3, S4 and S5 in the Aegean Sea subbasins. Generally, the organic carbon (TOC wt%) contents in sapropels range between 0.8% and 2% with highest concentrations of 9-13% in sapropels S4 and S5. Average sedimentation rates range between 4.7 and 11.8 cmlka with highest rates being observed in Euboea and North Ikaria basins (9.8 and 11.8 cm lka, respectively). The timing of the onset of sapropels S4 and S5 mostly predate those in the eastern Mediterranean with ages ranging from 106.4-105.6 and 128.6-128.4 ka BP, respectively. On the other hand, the initiation of the onset of sapropel S3 (i.e., 83.2-80.4 ka BP) seems to agree with its Mediterranean counterparts, which highlights the heterogeneity of the Aegean Sea subbasins in terms of rapid vs. lagged response to changing climatic conditions. The sapropel initiations appear to be synchronous across the Aegean Sea; whereas, the terminations display a wider temporal variability implying that the cessation of sapropels is controlled both by the amplitude of paleoclimatic changes and the physiography/location ofthe subbasins. Quantitative variations in the planktonic faunal assemblages exhibit a sequence of bioevents during the last -130,000 years which allow identification of four major biozones. The distributional patterns of the most significant taxa demonstrate similar trends among all core localities suggesting that the major changes in the planktonic foraminifera assemblages have taken place rather synchronously in the Aegean Sea. Sapropels S3, S4 and S5 were deposited under similar hydrographic conditions during which a distinct deep chlorophyll maximum (DCM) layer was established. This situation points to a stratified water column and increased export productivity during times of sapropel formation. On the other hand, the faunal contrast between Sl and older sapropels indicates that the former was developed in the absence of a DCM layer, lacking a deep phytoplankton assemblage. Under such conditions, oxygen advection via intermediate water flow must have been significantly reduced which implies significant stagnation. Sapropels are interpreted to have been deposited under normal marine conditions with temporary establishment of semi-euxinic bottom water conditions. Both marine and terrestrial organic matter contributed equally to MISS sapropels. In addition, organic carbon isotopic values across sapropels are more depleted than those in the eastern Mediterranean which, in tum, suggests enhanced riverine input during their deposition. Primary productivity calculations show that, particularly for sapropels with very high TOC values, both preservation and increased productivity are imperative in order to deposit sapropels with very high organic carbon contents (i.e., up to 13%).
Resumo:
The Buchans ore bodies of central Newfoundland represent some of the highest grade VMS deposits ever mined. These Kuroko-type deposits are also known for the well developed and preserved nature of the mechanically transported deposits. The deposits are hosted in Cambro-Ordovician, dominantly calc-alkaline, bimodal volcanic and epiclastic sequences of the Notre Dame Subzone, Newfoundland Appalachians. Stratigraphic relationships in this zone are complicated by extensively developed, brittledominated Silurian thrust faulting. Hydrothermal alteration of host rocks is a common feature of nearly all VMS deposits, and the recognition of these zones has been a key exploration tool. Alteration of host rocks has long been described to be spatially associated with the Buchans ore bodies, most notably with the larger in-situ deposits. This report represents a base-line study in which a complete documentation of the geochemical variance, in terms of both primary (igneous) and alteration effects, is presented from altered volcanic rocks in the vicinity of the Lucky Strike deposit (LSZ), the largest in-situ deposit in the Buchans camp. Packages of altered rocks also occur away from the immediate mining areas and constitute new targets for exploration. These zones, identified mostly by recent and previous drilling, represent untested targets and include the Powerhouse (PHZ), Woodmans Brook (WBZ) and Airport (APZ) alteration zones, as well as the Middle Branch alteration zone (MBZ), which represents a more distal alteration facies related to Buchans ore-formation. Data from each of these zones were compared to those from the LSZ in order to evaluate their relative propectivity. Derived litho geochemical data served two functions: (i) to define primary (igneous) trends and (ii) secondary alteration trends. Primary trends were established using immobile, or conservative, elements (i. e., HFSE, REE, Th, Ti0₂, Al₂0₃, P₂0₅). From these, altered volcanic rocks were interpreted in terms of composition (e.g., basalt - rhyodacite) and magmatic affinity (e.g., calc-alkaline vs. tholeiitic). The information suggests that bimodality is a common feature of all zones, with most rocks plotting as either basalt/andesite or dacite (or rhyodacite); andesitic senso stricto compositions are rare. Magmatic affinities are more varied and complex, but indicate that all units are arc volcanic sequences. Rocks from the LSZ/MBZ represent a transitional to calc-alkalic sequence, however, a slight shift in key geochemical discriminants occurs between the foot-wall to the hanging-wall. Specifically, mafic and felsic lavas of the foot-wall are of transitional (or mildly calc-alkaline) affinity whereas the hanging-wall rocks are relatively more strongly calc-alkaline as indicated by enriched LREE/HREE and higher ZrN, NbN and other ratios in the latter. The geochemical variations also serve as a means to separate the units (at least the felsic rocks) into hanging-wall and foot-wall sequences, therefore providing a valuable exploration tool. Volcanic rocks from the WBZ/PHZ (and probably the APZ) are more typical of tholeiitic to transitional suites, yielding flatter mantlenormalized REE patterns and lower ZrN ratios. Thus, the relationships between the immediate mining area (represented by LSZ/MBZ) and the Buchans East (PHZ/WBZ) and the APZ are uncertain. Host rocks for all zones consist of mafic to felsic volcanic rocks, though the proportion of pyroclastic and epiclastic rocks, is greatest at the LSZ. Phenocryst assemblages and textures are common in all zones, with minor exceptions, and are not useful for discrimination purposes. Felsic rocks from all zones are dominated by sericiteclay+/- silica alteration, whereas mafic rocks are dominated by chlorite- quartz- sericite alteration. Pyrite is ubiquitous in all moderately altered rocks and minor associated base metal sulphides occur locally. The exception is at Lucky Strike, where stockwork quartzveining contains abundant base-metal mineralization and barite. Rocks completely comprised of chlorite (chloritite) also occur in the LSZ foot-wall. In addition, K-feldspar alteration occurs in felsic volcanic rocks at the MBZ associated with Zn-Pb-Ba and, notably, without chlorite. This zone represents a peripheral, but proximal, zone of alteration induced by lower temperature hydrothermal fluids, presumably with little influence from seawater. Alteration geochemistry was interpreted from raw data as well as from mass balanced (recalculated) data derived from immobile element pairs. The data from the LSZ/MBZ indicate a range in the degree of alteration from only minor to severe modification of precursor compositions. Ba tends to show a strong positive correlation with K₂0, although most Ba occurs as barite. With respect to mass changes, Al₂0₃, Ti0₂ and P₂0₅ were shown to be immobile. Nearly all rocks display mass loss of Na₂O, CaO, and Sr reflecting feldspar destruction. These trends are usually mirrored by K₂0-Rb and MgO addition, indicating sericitic and chloritic alteration, respectively. More substantial gains ofK₂0 often occur in rocks with K-feldspar alteration, whereas a few samples also displayed excessive MgO enrichment and represent chloritites. Fe₂0₃ indicates both chlorite and sulphide formation. Si0₂ addition is almost always the case for the altered mafic rocks as silica often infills amygdules and replaces the finer tuffaceous material. The felsic rocks display more variability in Si0₂. Silicic, sericitic and chloritic alteration trends were observed from the other zones, but not K-feldspar, chloritite, or barite. Microprobe analysis of chlorites, sericites and carbonates indicate: (i) sericites from all zones are defined as muscovite and are not phengitic; (ii) at the LSZ, chlorites ranged from Fe-Mg chlorites (pycnochlorite) to Mg-rich chlorite (penninite), with the latter occurring in the stockwork zone and more proximal alteration facies; (iii) chlorites from the WBZ were typical of those from the more distal alteration facies of the LSZ, plotting as ripidolite to pycnochlorite; (iv) conversely, chlorite from the PHZ plot with Mg-Al-rich compositions (chlinochlore to penninite); and (v) carbonate species from each zone are also varied, with calcite occurring in each zone, in addition to dolomite and ankerite in the PHZ and WBZ, respectively. Lead isotope ratios for galena separates from the different various zones, when combined with data from older studies, tend to cluster into four distinctive fields. Overall, the data plot on a broad mixing line and indicate evolution in a relatively low-μ environment. Data from sulphide stringers in altered MBZ rocks, as well as from clastic sulphides (Sandfill prospect), plot in the Buchans ore field, as do the data for galena from altered rocks in the APZ. Samples from the Buchans East area are even more primitive than the Buchans ores, with lead from the PHZ plotting with the Connel Option prospect and data from the WBZ matching that of the Skidder prospect. A sample from a newly discovered debris flow-type sulphide occurrence (Middle Branch East) yields lead isotope ratios that are slightly more radiogenic than Buchans and plot with the Mary March alteration zone. Data within each cluster are interpreted to represent derivation from individual hydrothermal systems in which metals were derived from a common source.
Resumo:
Acknowledgments This work was carried out with support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) – Brazil, BG-Brazil and the University of Aberdeen. We would like to thank the following geologists for their support, camaraderie and countless hours of fieldwork: Claus Fallgatter, Victoria Valdez, Carla Puigdomenech, Guilherme Bozetti, Roberto Noll Filho and Arthur Giovannini, and we thank Lorena Moscardelli and an anonymous reviewer, whose constructive comments helped to improve the manuscript.
Resumo:
The authors acknowledge the financial support the Scottish Government’s Rural and Environmental Sciences and Analytical Services (RESAS) in order to complete some of the soil and pore water sample analysis as well as the Czech Ministry of Education, Youth and Sports (COST CZ LD13068), the Czech Science Foundation (GAČR 14-02183P) and EU COST actionFP1407 (‘ModWoodLife’) short term scientific mission grant in order to complete the column leaching test.
Resumo:
A University of Hawaii oceanographic cruise, Abyssal Hills 69, with the R/V Mahi, was carried out to study the association of manganese nodules with an abyssal hill. Manganese nodules from three dredge hauls on an abyssal hill located at 36°W and 157°W exhibited differences in morphology and composition between stations only three miles apart. The morphology of the nodules suggests that nodules from a single site have similar morphologies because they began growth at the same time, probably because of a volcanic event. Differences in morphology between stations indicate a local supply of elements. Atomic absorption analysis for manganese, iron, cobalt, nickel, and copper revealed that nodules nearest to a probable fault line and source of volcanism have a, lower manganese to iron ratio than nodules farther removed. This finding supports the theory that volcanism contributes to the formation of some nodules. Additional evidence showing association with volcanism consists of volcanic nuclei in nodules, crusts formed on layers of volcanic ash, and basalt encrusted to various degrees. The variation in cobalt, nickel, and copper contents Gt the nodules from a single dredge is two-to threefold, but iron content is more uniiorm. Four of the six cores from the area increased in manganese concentration with depth, suggesting that diffusion is concentrating manganese in the upper zone of the sediments or in nodules. The author concludes that volcanism is contributing to the formation of nodules by supplying nuclei and transition elements, but is not necessary for the formation of manganese nodules.
Resumo:
Todorokite is a very abundant manganese oxide mineral in many deposits in Cuba and has been noted from other localities. Six new analyses are givenl they lead to the approximate formula (Na, Ca, K, Mn+2)(Mn+4, Mn+2, Mg)6O12.3H2O. Electron diffraction data show the mineral to be orthorhombic, or monoclinic with beta near 90°. The x-ray powder pattern is indexed on a cell with a=0.75A, b=2.849A, c=9.59A, beta=90°. A differential thermal analysis curve is given.
Resumo:
Volcanogenic sediments were obtained from Site 584, located on the midslope of the Japan Trench. Occurrences of volcanic ash in the diatomaceous mudstones increase within sediments dated 6-3 Ma. The frequency pattern and the sediment accumulation rate obtained at Site 584 are similar to those of Site 440 and to those of Sites 438 and 439, located on the upper slope basin. Explosive volcanism increased during the Pliocene and late Miocene in relation to the intrusion of Tertiary granites and uplift of the Tohoku Arc (northeastern Japan Arc). Hygromagmaphile element concentration shows that the glass does not belong to a unique series, and a comparison with Nankai Trough data distinguishes at least two different evolutionary lines.
Resumo:
The Todoroki Mine is situated about 25 kilometers to the south-east of Ginzan railway station in Siribesi Province, Hokkaido. The author analysed an interesting specimen of black manganese-ore which had a fractured surface which looked like that of a broken piece of wood. This new manganese mineral was studied in its form, physical properties and chemical composition. The author later named this mineral form as "todorokite".
Resumo:
Station 678E (29°22'S. latitude, 80WW. longitude) is roughly midway between San Felix and Juan Fernandez Islands, and approximately 700 km west of the coast of Chile. The sample at Station 678E was collected in a Riedl Dredge with a finer net sewn into the cod end of the 500 JJ mesh bag. The change in depth during the dredging operation indicated a rather rapid shelving. The bottom was a red clay with some volcanic ash. Manganese nodules were present (rock dredge sample).