967 resultados para aromatic amino acid
Resumo:
One of the largest contributions to biologically available nitrogen comes from the reduction of N-2 to ammonia by rhizobia in symbiosis with legumes. Plants supply dicarboxylic acids as a carbon source to bacteroids, and in return they receive ammonia. However, metabolic exchange must be more complex, because effective N-2 fixation by Rhizobium leguminosarum bv viciae bacteroids requires either one of two broad-specificity amino acid ABC transporters (Aap and Bra). It was proposed that amino acids cycle between plant and bacteroids, but the model was unconstrained because of the broad solute specificity of Aap and Bra. Here, we constrain the specificity of Bra and ectopically express heterologous transporters to demonstrate that branched-chain amino acid (LIV) transport is essential for effective N-2 fixation. This dependence of bacteroids on the plant for LIV is not due to their known down-regulation of glutamate synthesis, because ectopic expression of glutamate dehydrogenase did not rescue effective N-2 fixation. Instead, the effect is specific to LIV and is accompanied by a major reduction in transcription and activity of LIV biosynthetic enzymes. Bacteroids become symbiotic auxotrophs for LIV and depend on the plant for their supply. Bacteroids with aap bra null mutations are reduced in number, smaller, and have a lower DNA content than wild type. Plants control LIV supply to bacteroids, regulating their development and persistence. This makes it a critical control point for regulation of symbiosis. MICROBIOLOGY
Resumo:
The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW < 500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.
Resumo:
We report herein, the first generation of unsymmetrical ketone-derived chiral stabilized azomethine ylides. Intrairiolecular and intermolecular cycloaddition strategies have been utilized to synthesize both an enantiornerically pure bicyclic proline derivative and an enantionierically pure beta-hydroxy-alpha-amino acid.
Resumo:
X-ray diffraction studies show that peptides Boc-Leu-Aib-m-ABA-OMe (I) (Aib, alpha-aminoisobutyric acid; m-ABA, meta-aminobenzoic acid) and Boc-Phe-Aib-m-ABA-OMe, (II) adopt a type-II beta-turn conformation, solely stabilized by co-operative steric interactions amongst the amino acid residues. This type of U-turn without any intramolecular hydrogen bonding is generally referred to as an open turn. Although there are some examples of constrained cyclic peptides in which o-substituted benzenes have been inserted to mimic the turn region of the neurotrophin, a nerve growth factor, peptides I and II present novel two examples where m-aminobenzoic acid has been incorporated in the beta-turn of acyclic tripeptides. The result also demonstrates the first crystallographic evidence of a beta-turn structure containing an inserted m-aminobenzoic acid, which can be considered as a rigid gamma-aminobutyric acid with an all-trans extended configuration. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The terpenoid chiral selectors dehydroabietic acid, 12,14-dinitrodehydroabietic acid and friedelin have been covalently linked to silica gel yielding three chiral stationary phases CSP 1, CSP 2 and CSP 3, respectively. The enantiodiscriminating capability of each one of these phases was evaluated by HPLC with four families of chiral aromatic compounds composed of alcohols, amines, phenylalanine and tryptophan amino acid derivatives and beta-lactams. The CSP 3 phase, containing a selector with a large friedelane backbone is particularly suitable for resolving free alcohols and their derivatives bearing fluorine substituents, while CSP 2 with a dehydroabietic architecture is the only phase that efficiently discriminates 1, 1'-binaphthol atropisomers. CSP 3 also gives efficient resolution of the free amines. All three phases resolve well the racemates of N-trifluoracetyl and N-3,5-dinitrobenzoyl phenylalanine amino acid ester derivatives. Good enantioseparation of beta-lactams and N-benzoyl tryptophan amino acid derivatives was achieved on CSP 1. In order to understand the structural factors that govern the chiral molecular recognition ability of these phases, molecular dynamics simulations were carried out in the gas phase with binary diastereomeric complexes formed by the selectors of CSP 1 and CSP 2 and several amino acid derivatives. Decomposition of molecular mechanics energies shows that van der Waals interactions dominate the formation of the diastereomeric transient complexes while the electrostatic binding interactions are primarily responsible for the enantioselective binding of the (R)- and (S)-analytes. Analysis of the hydrogen bonds shows that electrostatic interactions are mainly associated with the formation of N-(HO)-O-...=C enantio selective hydrogen bonds between the amide binding sites from the selectors and the carbonyl groups of the analytes. The role of mobile phase polarity, a mixture of n-hexane and propan-2-ol in different ratios, was also evaluated through molecular dynamics simulations in explicit solvent. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Acrylamide and pyrazine formation, as influenced by the incorporation of different amino acids, was investigated in sealed low-moisture asparagine-glucose model systems. Added amino acids, with the exception of glycine and cysteine and at an equimolar concentration to asparagine, increased the rate of acrylamide formation. The strong correlation between the unsubstituted pyrazine and acrylamide suggests the promotion of the formation of Maillard reaction intermediates, and in particular glyoxal, as the determining mode of-action. At increased amino acid concentrations, diverse effects were observed. The initial rates of acrylamide formation remained high for valine, alanine, phenylalanine, tryptophan, glutamine, and Ieucine, while a significant mitigating effect, as evident from the acrylamide yields after 60 min of heating at 160 degrees C, was observed for proline, tryptophan, glycine, and cysteine. The secondary amine containing amino acids, proline and tryptophan, had the most profound mitigating effect on acrylamide after 60 min of heating. The relative importance of the competing effect of added amino acids for alpha-dicarbonyls and acrylamide-amino, acid alkylation reactions is discussed and accompanied by data on the relative formation rates of selected amino acid-AA adducts.
Resumo:
Oral supplements of arginine and citrulline increase local nitric oxide (NO production in the small intestine and this may be harmful under certain circumstances. Gastrointestinal toxicity was therefore reviewed with respect to the intestinal physiology of arginine, citrulline, ornithine, and cystine (which shares the same transporter) and the many clinical trials of supplements of the dibasic amino acids or N-acetylcysteine (NAC. The human intestinal dibasic amino acid transport system has high affinity and low capacity. L-Arginine (but not lysine, ornithine, or D-arginine) induces water and electrolyte secretion that is mediated by NO, which acts as an absorbagogue at low levels and as a secretagogue at high levels. The action of many laxatives is NO mediated and there are reports of diarrhea following oral administration of arginine or ornithine ihine. The clinical data cover a wide span of arginine intakes f rom 3 g/d to > 100 g/d, but the standard of reporting adverse effects (e.g. nausea, vomiting, and diarrhea) was variable. Single doses of 3-6 g rarely provoked side effects and healthy athletes appeared to be more susceptible than diabetic patients to gastrointestinal symptoms at individual doses >9 g. This may relate to an effect of disease on gastrointestinal motility and pharmacokinetics. Most side effects of arginine and NAC occurred at single doses of >9 g in adults >140 mg/kg) often when part of a daily regime of similar to>30 g/d (>174 mmol/d). In the case of arginine, this compares with the laxative threshold of the nonabsorbed disaccharide alcohol, lactitol (74 g or 194 mmol). Adverse effects seemed dependent on the dosage regime and disappeared if divided doses were ingested (unlike lactitol). Large single doses of poorly absorbed amino acids seem to provoke diarrhea. More research is needed to refine dosage strategies that reduce this phenomenon. It is suggested that dipeptide forms of arginine may meet this criterion.
Resumo:
To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing.
Resumo:
Rat kidney glutamine transaminase K (GTK) exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. The beta-lyase reaction products are pyruvate, ammonium and a sulfhydryl-containing fragment. We show here that recombinant human GTK (rhGTK) also exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. S-(1,1,2,2-Tetrafluoroethyl)-L-CySteine is an excellent aminotransferase and beta-lyase substrate of rhGTK. Moderate aminotransferase and beta-lyase activities occur with the chemopreventive agent Se-methyl-L-selenocysteine. L-3-(2-Naphthyl)alanine, L-3-(1-naphthyl)alanine, 5-S-L-cysteinyldopamine and 5-S-L-cysteinyl-L-DOPA are measurable aminotransferase substrates, indicating that the active site can accommodate large aromatic amino acids. The alpha-keto acids generated by transamination/L-amino acid oxidase activity of the two catechol cysteine S-conjugates are unstable. A slow rhGTK-catalyzed beta-elimination reaction, as measured by pyruvate formation, was demonstrated with 5-S-L-CysteinyIdopamine, but not with 5-S-L-CySteinyl-L-DOPA. The importance of transamination, oxidation and beta-elimination reactions involving 5-S-L-cysteinyldopamine, 5-S-L-cysteinyt-L-DOPA and Se-methyl-L-selenocysteirte in human tissues and their biological relevance are discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The synthetic approach to threo-2-amino-3-hydroxyesters possessing long alkyl chains outlined herein centres on the generation of chiral azomethine ylids by reaction of (5R)-5-phenyl-morpholin-2-one, (R)-(1), with long chain aldehydes. In the presence of a second equivalent of aldehyde, the azomethine ylid can be trapped to afford a cycloadduct with three new stereodefined centres. Degradation of the cycloadduct allows entry to beta-substituted-alpha-amino acid derivatives, which have potential as building blocks for sphingosine synthesis.
Resumo:
The self-assembly of a peptide based on a sequence from the amyloid beta peptide but incorporating the non-natural amino acid beta-2-thienylalanine (2-Thi) has been investigated in aqueous and methanol solutions. The peptide AAKLVFF was used as a design motif, replacing the phenylalanine residues (F) with 2-Thi units to yield (2-Thi)(2-Thi)VLKAA. The 2-Thi residues are expected to confer interesting electronic properties due to charge delocalization and pi-stacking. The peptide is shown to form beta-sheet-rich amyloid fibrils with a twisted morphology, in both water and methanol solutions at sufficiently high concentration. The formation of a self-assembling hydrogel is observed at high concentration. Detailed molecular modeling using molecular dynamics methods was performed using NOE constraints provided by 2D-NMR experiments. The conformational and charge properties of 2-Thi were modeled using quantum mechanical methods, and found to be similar to those previously reported for the beta-3-thienylalanine analogue. The molecular dynamics simulations reveal well-defined folded structures (turn-like) in dilute aqueous solution, driven by self-assembly of the hydrophobic aromatic units, with charged lysine groups exposed to water.
Resumo:
Acrylamide forms from free asparagine and sugars during cooking, and products derived from the grain of cereals, including rye, contribute a large proportion of total dietary intake. In this study, free amino acid and sugar concentrations were measured in the grain of a range of rye varieties grown at locations in Hungary, France, Poland, and the United Kingdom and harvested in 2005, 2006, and 2007. Genetic and environmental (location and harvest year) effects on the levels of acrylamide precursors were assessed. The data showed free asparagine concentration to be the main determinant of acrylamide formation in heated rye flour, as it is in wheat. However, in contrast to wheat, sugar, particularly sucrose, concentration also correlated both with asparagine concentration and with acrylamide formed. Free asparagine concentration was shown to be under genetic (G), environmental (E), and integrated (G × E) control. The same was true for glucose, whereas maltose and fructose were affected mainly by environmental factors and sucrose was largely under genetic control. The ratio of variation due to varieties (genotype) to the total variation (a measure of heritability) for free asparagine concentration in the grain was 23%. Free asparagine concentration was closely associated with bran yield, whereas sugar concentration was associated with low Hagberg falling number. Rye grain was found to contain much higher concentrations of free proline than wheat grain, and less acrylamide formed per unit of asparagine in rye than in wheat flour.
Resumo:
The tripeptides Boc-Gly-Aib-m-ABA-OMe (I), Boc-beta Ala-Aib-m-ABA-OMe (II) and Boc-gamma Abu-Aib-rn-ABA-OMe (III) (Aib: alpha-aminoisobutyric acid, beta Ala: beta-alanine, gamma Abu: gamma-aminobutyric acid, m-ABA: meta-aminobenzoic acid) with homologated amino acids at the N-terminus, the rigid gamma-amino acid m-ABA at the C-terminus and the helicogenic Aib at the central position have been chosen to create unusual turns. Single crystal X-ray diffraction studies, solvent dependent NMR titrations and 2D NMR analysis reveal that peptides II and III adopt unusual turns of 11- and 12-membered rings stabilized by modified 4 -> 1 type intramolecular hydrogen bonds. Solution phase studies indicate that peptide I exists in the beta-turn conformation stabilized by 10-membered intramolecular hydrogen bonding.
Resumo:
Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.
Resumo:
Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes.