979 resultados para air pollution control


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectionable odors remain at the top of air pollution complaints in urban areas such as Broward County that is subject to increasing residential and industrial developments. The odor complaints in Broward County escalated by 150 percent for the 2001 to 2004 period although the population increased by only 6 percent. It is estimated that in 2010 the population will increase to 2.5 million. Relying solely on enforcing the local odor ordinance is evidently not sufficient to manage the escalating odor complaint trends. An alternate approach similar to odor management plans (OMPs) that are successful in managing major malodor sources such as animal farms is required. ^ This study aims to develop and determine the feasibility of implementing a comprehensive odor management plan (COMP) for the entire Broward County. Unlike existing OMPs for single sources where the receptors (i.e. the complainants) are located beyond the boundary of the source, the COMP addresses a complex model of multiple sources and receptors coexisting within the boundary of the entire county. Each receptor is potentially subjected to malodor emissions from multiple sources within the county. Also, the quantity and quality of the source/receptor variables are continuously changing. ^ The results of this study show that it is feasible to develop a COMP that adopts a systematic procedure to: (1) Generate maps of existing odor complaint areas and malodor sources, (2) Identify potential odor sources (target sources) responsible for existing odor complaints, (3) Identify possible odor control strategies for target sources, (4) Determine the criteria for implementing odor control strategies, (5) Develop an odor complaint response protocol, and (6) Conduct odor impact analyses for new sources to prevent future odor related issues. Geographic Information System (GIS) is used to identify existing complaint areas. A COMP software that incorporates existing United States Environmental Protection Agency (EPA) air dispersion software is developed to determine the target sources, predict the likelihood of new complaints, and conduct odor impact analysis. The odor response protocol requires pre-planning field investigations and conducting surveys to optimize the local agency available resources while protecting the citizen's welfare, as required by the Clean Air Act. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Amazon holds over half of the planet's remaining tropical forests and comprises the largest biodiversity in the world, accounting for approximately 60 % of the Brazilian territory. However, deforestation fires in the region causes serious problems to exposed human. The aim of this study was to evaluate the chemical compounds as well as the cellular and molecular effects after exposure to organic material extracted from particulate matter less than 10 µm (PM10) in the Amazon region. As for the chemical composition, n-alkanes analysis showed a prevalence of anthropogenic influence during the fires in the region. In addition, there was a predominance of monosaccharides from biomass burning markers. Also, the Polycyclic Aromatic Hydrocarbons (PAH) and their derivatives have also been identified in samples collected in the Amazon. By using the PAH concentrations was possible to calculate the BaP-equivalent and it was found that the dibenz(a) anthracene contributes with 83% to potential carcinogenic risk. As for the potential mutagenic risk, the benzo (a) pyrene is the HPA that has a major contribution in this analysis. It may be noted that the retene was the most abundant PAH. This compound was genotoxic and cause death by necrosis in the human lung cells. In biological tests, the data showed that organic PM10 is capable of causing genetic damage in both plant cells and in human lung cells. This damage cause an arrest in the G1 phase of the cell cycle exposed, increasing the expression of p53 and p21. Additionally, the PM10 caused cell death by apoptosis, increasing the foci of histone - H2AX. Given these results, it is important to emphasize the reduction and better control of biomass burning in the Amazon region thus improving the quality of health of the population being exposed. As clearly stated recently by the World Health Organization, the reduction of air pollution could save millions of lives annually.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way - i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3M€·y(-1). The largest net benefit is obtained for the scenario considering the conversion of 50% of open fire places into heat recovery wood stoves. Although the implementation costs of this measure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for policy decision support on air quality improvement strategies, and could be applied to other urban areas where AQP need to be implemented and monitored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cover title.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Contabilidade e Finanças

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many South Carolina residents are concerned about indoor mold after severe weather events. DHEC has compiled this informational handout with recommendations to guide decisions regarding mold in homes and workplaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The South Carolina Department of Health and Environmental Control has declared an air quality alert day for fine particulates, caused by smoke from widespread forest fires. This sheet gives seven tips for protecting yourself from wildfire smoke.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introducción: El Cáncer es prevenible en algunos casos, si se evita la exposición a sustancias cancerígenas en el medio ambiente. En Colombia, Cundinamarca es uno de los departamentos con mayores incrementos en la tasa de mortalidad y en el municipio de Sibaté, habitantes han manifestado preocupación por el incremento de la enfermedad. En el campo de la salud ambiental mundial, la georreferenciación aplicada al estudio de fenómenos en salud, ha tenido éxito con resultados válidos. El estudio propuso usar herramientas de información geográfica, para generar análisis de tiempo y espacio que hicieran visible el comportamiento del cáncer en Sibaté y sustentaran hipótesis de influencias ambientales sobre concentraciones de casos. Objetivo: Obtener incidencia y prevalencia de casos de cáncer en habitantes de Sibaté y georreferenciar los casos en un periodo de 5 años, con base en indagación de registros. Metodología: Estudio exploratorio descriptivo de corte transversal,sobre todos los diagnósticos de cáncer entre los años 2010 a 2014, encontrados en los archivos de la Secretaria de Salud municipal. Se incluyeron unicamente quienes tuvieron residencia permanente en el municipio y fueron diagnosticados con cáncer entre los años de 2010 a 2104. Sobre cada caso se obtuvo género, edad, estrato socioeconómico, nivel académico, ocupación y estado civil. Para el análisis de tiempo se usó la fecha de diagnóstico y para el análisis de espacio, la dirección de residencia, tipo de cáncer y coordenada geográfica. Se generaron coordenadas geográficas con un equipo GPS Garmin y se crearon mapas con los puntos de la ubicación de las viviendas de los pacientes. Se proceso la información, con Epi Info 7 Resultados: Se encontraron 107 casos de cáncer registrados en la Secretaria de Salud de Sibaté, 66 mujeres, 41 hombres. Sin división de género, el 30.93% de la población presento cáncer del sistema reproductor, el 18,56% digestivo y el 17,53% tegumentario. Se presentaron 2 grandes casos de agrupaciones espaciales en el territorio estudiado, una en el Barrio Pablo Neruda con 12 (21,05%) casos y en el casco Urbano de Sibaté con 38 (66,67%) casos. Conclusión: Se corroboro que el análisis geográfico con variables espacio temporales y de exposición, puede ser la herramienta para generar hipótesis sobre asociaciones de casos de cáncer con factores ambientales.