986 resultados para advanced dynamics
Resumo:
Background An Advanced Pharmacy Practice Framework for Australia (the ‘APPF’) was published in October 2012. Further to the release of the APPF, the Advanced Pharmacy Practice Framework Steering Committee planned to develop an advanced practice recognition model for Australian pharmacists. Aim To gauge the perspectives of the pharmacy profession relating to advanced practice, via an online survey, in order to inform the design of the model. Method A survey was developed and administered to Australian pharmacists through SurveyMonkey . The survey content was based on findings from a review of national and international initiatives for recognition of advanced practice in pharmacy and other health disciplines, including medicine and nursing. Results The results of the survey showed that a high proportion of respondents considered they were already working at, or working towards achieving, an advanced level of practice. The responses relating to the assessment methods showed a clear preference for ‘submission of a professional portfolio’. A ‘written examination’ had a low level of support and in relation to an ‘oral examination by a panel’ there was a marked preference for a panel of multidisciplinary health professionals over a panel of pharmacists. Conclusion The survey outcomes will inform the development of an advanced pharmacy practice recognition model for Australian pharmacists, particularly in relation to the assessment methods. Survey outcomes also demonstrated that there is scope to further enhance the application of the APPF in the development and recognition of advanced practitioners, and to build greater awareness of the breadth of competencies encompassed by ‘advanced practice’.
Resumo:
The need to develop An Advanced Pharmacy Practice Framework for Australia (the “APPF”) was identified during the 2010 review of the competency standards for Australian pharmacists. The Advanced Pharmacy Practice Framework Steering Committee, a collaborative profession-wide committee comprised of representatives of ten pharmacy organisations, examined and adapted existing advanced practice frameworks, all of which were found to have been based on the Competency Development and Evaluation Group (CoDEG) Advanced and Consultant Level Framework (the “CoDEG Framework”) from the United Kingdom. Its competency standards were also found to align well with the Domains of the National Competency Standards Framework for Pharmacists in Australia (the “National Framework”). Adaptation of the CoDEG Framework created an APPF that is complementary to the National Framework, sufficiently flexible to customise for recognising advanced practice in any area of professional practice and has been approved by the boards/councils of all participating organisations. The primary purpose of the APPF is to assist the development of the profession to meet the changing health care needs of the community. However, it is also a valuable tool for assuring members of the public of the competence of an advanced practice pharmacist and the quality and safety of the services they deliver.
Resumo:
Background The Australian Pharmacy Practice Framework was developed by the Advanced Pharmacy Practice Steering Committee and endorsed by the Pharmacy Board of Australia in October 2012. The Steering Committee conducted a study that found practice portfolios to be the preferred method to assess and credential Advanced Pharmacy Practitioner, which is currently being piloted by the Australian Pharmacy Council. Credentialing is predicted to open to all pharmacists practising in Australia by November 2015. Objective To explore how Australian pharmacists self-perceived being advanced in practice and how they related their level of practice to the Australian Advanced Pharmacy Practice Framework. Method This was an explorative, cross-sectional study with mixed methods analysis. Advanced Pharmacy Practice Framework, a review of the recent explorative study on Advanced Practice conducted by the Advanced Pharmacy Practice Framework Steering Committee and semi-structured interviews (n = 10) were utilized to create, refine and pilot the questionnaire. The questionnaire was advertised across pharmacy-organizational websites via a purposive sampling method. The target population were pharmacists currently registered in Australia. Results Seventy-two participants responded to the questionnaire. The participants were mostly female (56.9%) and in the 30–40 age group (26.4%). The pharmacists self-perceived their levels of practice as either entry, transition, consolidation or advanced, with the majority selecting the consolidation level (38.9%). Although nearly half (43.1%) of the participants had not seen the Framework beforehand, they defined Advanced Pharmacy Practice similarly to the definition outlined in the Framework, but also added specialization as a requirement. Pharmacists explained why they were practising at their level of practice, stating that not having more years of practice, lacking experience, or postgraduate/post-registration qualifications, and more involvement and recognition in practice were the main reasons for not considering themselves as an Advanced Pharmacy Practitioner. To be considered advanced by the Framework, pharmacists would need to fulfill at least 70% of the Advanced Practice competency standards at an advanced level. More than half of the pharmacists (64.7%) that self-perceived as being advanced managed to fulfill 70% or more of these Advanced Practice competency standards at the advanced level. However, none of the self-perceived entry level pharmacists managed to match at least 70% of the competencies at the entry level. Conclusion Participants' self-perception of the term Advanced Practice was similar to the definition in the Advanced Pharmacy Practice Framework. Pharmacists working at an advanced level were largely able to demonstrate and justify their reasons for being advanced practitioners. However, pharmacists practising at the other levels of practice (entry, transition, consolidation) require further guidance regarding their advancement in practice.
Resumo:
State and parameter estimations of non-linear dynamical systems, based on incomplete and noisy measurements, are considered using Monte Carlo simulations. Given the measurements. the proposed method obtains the marginalized posterior distribution of an appropriately chosen (ideally small) subset of the state vector using a particle filter. Samples (particles) of the marginalized states are then used to construct a family of conditionally linearized system of equations and thus obtain the posterior distribution of the states using a bank of Kalman filters. Discrete process equations for the marginalized states are derived through truncated Ito-Taylor expansions. Increased analyticity and reduced dispersion of weights computed over a smaller sample space of marginalized states are the key features of the filter that help achieve smaller sample variance of the estimates. Numerical illustrations are provided for state/parameter estimations of a Duffing oscillator and a 3-DOF non-linear oscillator. Performance of the filter in parameter estimation is also assessed using measurements obtained through experiments on simple models in the laboratory. Despite an added computational cost, the results verify that the proposed filter generally produces estimates with lower sample variance over the standard sequential importance sampling (SIS) filter.
Resumo:
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2-4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.
Resumo:
Background: Fatigue is one of the most distressing and commonly experienced symptoms in patients with advanced cancer. Although the self-management (SM) of cancer-related symptoms has received increasing attention, no research instrument assessing fatigue SM outcomes for patients with advanced cancer is available. Objectives: to describe the development and preliminary testing of an interviewer administered instrument for assessing the frequency, and perceived levels of effectiveness and self-efficacy associated with fatigue SM behaviors in patients with advanced cancer. Methods: The development and testing of the Self-efficacy in Managing Symptoms Scale- Fatigue Subscale for Patients with Advanced Cancer (SMSFS-A) involved a number of procedures: item-generation using a comprehensive literature review and semi-structured interviews, content validity evaluation using expert panel reviews, and face validity and test-retest reliability evaluation using pilot testing. Results: Initially, 23 items (22 specific behaviors with one global item) were generated from the literature review and semi-structured interviews. After two rounds of expert panel review, the final scale was reduced to 17 items (16 behaviors with one global item). Participants in the pilot test (n=10) confirmed that the questions in this scale were clear and easy to understand. Bland-Altman analysis showed agreement of results over a one-week interval. Conclusions: The SMSFS-A items were generated using multiple sources. This tool demonstrated preliminary validity and reliability. Implications for practice: The SMSFS-A has the potential to be used for clinical and research purposes. Nurses can use this instrument for collecting data to inform the initiation of appropriate fatigue SM support for this population.
Resumo:
The monsoonal regions of the world are characterized by a seasonal reversal in the direction of winds associated with the excursion of the equatorial trough (or the ITCZ) in response to the variation in the latitude of maximum insolation. This monsoonal circulation is a planetary scale phenomenon. However, the associated precipitation is critically dependent on the organization of the cumulus clouds (typically a few kilometers in horizontal extent) over the scale of synoptic vortices (typically a few hundred kilometers in horizontal extent). Thus modelling of the seasonal transitions and intraseasonal fluctuations requires an understanding of the fluid mechanics of these three scales of organizations and their interactions. The present paper is an attempt to outline the current state of understanding of these phenomena.
Resumo:
Here I aimed at quantifying the main components of deadwood dynamics, i.e. tree mortality, deadwood pools, and their decomposition, in late-successional boreal forests. I focused on standing dead trees in three stand types dominated by Picea mariana and Abies balsamea in eastern Canada, and on standing and down dead trees in Picea abies-dominated stands in three areas in Northern Europe. Dead and living trees were measured on five sample plots of 1.6-ha size in each study area and stand type. Stem disks from dead trees were sampled to determine wood density and year of death, using dendrochronological methods. The results were applied to reconstruct past tree mortality and to model deadwood decay class dynamics. Site productivity, stand developmental stage, and the occurrence of episodic tree mortality influenced deadwood volume and quality. In all study areas tree mortality was continuous, leading to continuity in deadwood decay stage distribution. Episodic tree mortality due to either autogenic or allogenic causes influenced deadwood volume and quality in all but one study area. However, regardless of productivity and disturbance history deadwood was abundant, accounting for 20 53% of total wood volume in European study areas, and 15 27% of total standing volume in eastern Canada. Deadwood was a persistent structural component, since its expected residence time in early- and midstages of decay was 18 yr even in the area with the most rapid decomposition. The results indicated that in the absence of episodic tree mortality, stands may eventually develop to a steady state, in which deadwood volume fluctuates around an equilibrium state. However, in many forests deadwood is naturally variable, due to recurrent moderate-severity disturbances. This variability, the continuous tree mortality, and variation in rates of wood decomposition determine the dynamics and availability of deadwood as a habitat and carbon storage medium in boreal coniferous forest ecosystems.
Resumo:
Northern peatlands are thought to store one third of all soil carbon (C). Besides the C sink function, peatlands are one of the largest natural sources of methane (CH4) to the atmosphere. Climate change may affect the C gas dynamics as well as the labile C pool. Because the peatland C sequestration and CH4 emissions are governed by high water levels, changes in hydrology are seen as the driving factor in peatland ecosystem change. This study aimed to quantify the carbon dioxide (CO2) and CH4 dynamics of a fen ecosystem at different spatial scales: plant community components scale, plant community scale and ecosystem scale, under hydrologically normal and water level drawdown conditions. C gas exchange was measured in two fens in southern Finland applying static chamber and eddy covariance techniques. During hydrologically normal conditions, the ecosystem was a CO2 sink and CH4 source to the atmosphere. Sphagnum mosses and sedges were the most important contributors to the community photosynthesis. The presence of sedges had a major positive impact on CH4 emissions while dwarf shrubs had a slightly attenuating impact. C fluxes varied considerably between the plant communities. Therefore, their proportions determined the ecosystem scale fluxes. An experimental water level drawdown markedly reduced the photosynthesis and respiration of sedges and Sphagnum mosses and benefited shrubs. Consequently, changes were smaller at the ecosystem scale than at the plant group scale. The decrease in photosynthesis and the increase in respiration, mostly peat respiration, made the fen a smaller CO2 sink. CH4 fluxes were significantly lowered, close to zero. The impact of natural droughts was similar to, although more modest than, the impact of the experimental water level drawdown. The results are applicable to the short term impacts of the water level drawdown and to climatic conditions in which droughts become more frequent.
Resumo:
The objectives of this study were to investigate the stand structure and succession dynamics in Scots pine (Pinus sylvestris L.) stands on pristine peatlands and in Scots pine and Norway spruce (Picea abies (L.) Karst.) dominated stands on drained peatlands. Furthermore, my focus was on characterising how the inherent and environmental factors and the intermediate thinnings modify the stand structure and succession. For pristine peatlands, the study was based on inventorial stand data, while for drained peatlands, longitudinal data from repeatedly measured stands were utilised. The studied sites covered the most common peatland site types in Finland. They were classified into two categories according to the ecohydrological properties related to microsite variation and nutrient levels within sites. Tree DBH and age distributions in relation to climate and site type were used to study the stand dynamics on pristine sites. On drained sites, the Weibull function was used to parameterise the DBH distributions and mixed linear models were constructed to characterise the impacts of different ecological factors on stand dynamics. On pristine peatlands, both climate and the ecohydrology of the site proved to be crucial factors determining the stand structure and its dynamics. Irrespective of the vegetation succession, enhanced site productivity and increased stand stocking they significantly affected the stand dynamics also on drained sites. On the most stocked sites on pristine peatlands the inter-tree competition seemed to also be a significant factor modifying stand dynamics. Tree age and size diversity increased with stand age, but levelled out in the long term. After drainage, the stand structural unevenness increased due to the regeneration and/or ingrowth of the trees. This increase was more pronounced on sparsely forested composite sites than on more fully stocked genuine forested sites in Scots pine stands, which further undergo the formation of birch and spruce undergrowth beneath the overstory as succession proceeds. At 20-30 years after drainage the structural heterogeneity started to decrease, indicating increased inter-tree competition, which increased the mortality of suppressed trees within stand. Peatland stands are more dynamic than anticipated and are generally not characterized by a balanced, self-perpetuating structure. On pristine sites, various successional pathways are possible, whereas on drained sites the succession has more uniform trend. Typically, stand succession proceeds without any distinct developmental stages on pristine peatlands, whereas on drained peatlands, at least three distinct stages could be identified. Thinnings had only little impact on the stand succession. The new information on stand dynamics may be utilised, e.g. in forest management planning to facilitate the allocation of the growth resources to the desired crop component by appropriate silvicultural treatments, as well as assist in assessing the effects of the climate change on the forested boreal peatlands.
Resumo:
Europe was declared malaria free in 1975. The disappearance of malaria has traditionally been attributed to numerous deliberate actions like vector control, the screening of houses, more efficient medication etc. Malaria, however, disappeared from many countries like Finland before any counter measures had even started. The aim of this thesis is to study the population ecology of P. vivax and its interaction with the human host and the vector. By finding the factors that attributed to the extinction of vivax malaria it might be possible to improve the modern strategy against P. vivax. The parasite was studied with data from Finland, which provides the longest time series (1749-2008) of malaria statistics in the world. The malaria vectors, Anopheles messeae and A. beklemishevi are still common species in the country. The eradication of vivax malaria is difficult because the parasite has a dormant stage that can cause a relapse long after a primary infection. It was now shown that P. vivax is able to detect the presence of a potential vector. A dormant stage is triggered even from a bite of an uninfected Anopheles mosquito. This optimizes the chances for the Plasmodium to reach a mosquito vector for sexual reproduction. The longevity of the dormant stage could be shown to be at least nine years. The parasite spends several years in its human host and the behaviour of the human carrier had a profound impact on the decline of the disease in Finland. Malaria spring epidemics could be explained by a previous warm summer. Neither annual nor summer mean temperature had any impact on the long term malaria trend. Malaria disappeared slowly from Finland without mosquito control. The sociological change from extended families to nuclear families led to decreased household size. The decreased household size correlated strongly with the decline of malaria. That led to an increased isolation of the subpopulations of P. vivax. Their habitat consisted of the bedrooms in which human carriers slept together with the overwintering vectors. The isolation of the parasite ultimately led to the extinction of vivax malaria. Metapopulation models adapted to local conditions should therefore be implemented as a tool for settlement planning and socio-economic development and become an integrated part of the fight against malaria.
Resumo:
Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.