955 resultados para adsorbed
Resumo:
Dibenzodioxin adsorption/desorption on solid surfaces is an important issue associated with the formation, adsorption, and emission of dioxins. Dibenzodioxin adsorption/desorption behaviors on inorganic materials (amorphous/mesoporous silica, metal oxides, and zeolites) were investigated using in situ FT-IR spectroscopy and thermogravimetric (TG) analysis. Desorption temperatures of adsorbed dibenzodioxin are very different for different kinds of inorganic materials: similar to 200 degrees C for amorphous/mesoporous silica, similar to 230 degrees C for metal oxides, and similar to 450 degrees C for NaY and mordenite zeolites. The adsorption of dibenzodioxin can be grouped into three categories according to the red shifts of the IR band at 1496 cm(-1) of the aromatic ring for the adsorbed dibenzodioxin: a shift of 6 cm-1 for amorphous/mesoporous silica, a shift of 10 cm(-1) for metal oxides, and a shift of 14 cm(-1) for NaY and mordenite, suggesting that the IR shifts are proposed to associated with the strength of the interaction between adsorbed dibenzodioxin and the inorganic materials. It is proposed that the dibenzodioxin adsorption is mainly via the following three interactions: hydrogen bonding with the surface hydroxyl groups on amorphous/mesoporous silica, complexation with Lewis acid sites on metal oxides, and confinement effect of pores of mordenite and NaY with pore size close to the molecular size of dibenzodioxin.
Resumo:
In situ IR measurements for CO adsorption and preferential CO oxidation in H-2-rich gases over Ag/SiO2 catalysts are presented in this paper. CO adsorbed on the Ag/SiO2 pretreated with oxygen shows a band centered around 2169 cm(-1), which is assigned to CO linearly bonded to Ag+ sites. The amount of adsorbed CO on the silver particles ( manifested by an IR band at 2169 cm(-1)) depends strongly on the CO partial pressure and the temperature. The steady-state coverage on the Ag surface is shown to be significantly below saturation, and the oxidation of CO with surface oxygen species is probably via a non-competitive Langmuir Hinshelwood mechanism on the silver catalyst which occurs in the high-rate branch on a surface covered with CO below saturation. A low reactant concentration on the Ag surface indicates that the reaction order with respect to Pco is positive, and the selectivity towards CO2 decreases with the decrease of Pco. On the other hand, the decrease of the selectivity with the reaction temperature also reflects the higher apparent activation energy for H-2 oxidation than that for CO oxidation.
Resumo:
Silver is well known to show peculiar catalytic activities in several oxidation reactions. In the present paper, we investigate the catalytic activity of silver catalysts toward CO-gelective oxidation in H-2. XRD, TEM, TPD, and in situ FTIR techniques were used to characterize the catalysts. The pretreatment of the catalysts was found to have great influence on their performance. The pretreatment in 02 improves the activity of the silver catalyst, whereas He pretreatment at 700 degreesC or direct hydrogen pretreatment shows an inverse effect. Silver catalysts undergo massive structural change during oxygen pretreatment at high temperatures (> 500 degreesC), and there is solid evidence for the formation of subsurface oxygen species. The existence of this silver-subsurface oxygen structure facilitates the formation of active sites on silver catalysts for CO oxidation, which are related to the size, morphology, and exposed crystal planes of the silver particles. Its formation requires a certain temperature, and a higher pretreatment temperature with oxygen is required for the silver catalyst with a smaller particle size. It is observed, for the first time, that adsorbed CO on the surface of silver particles can directly react with subsurface oxygen species at low temperatures (e.g., RT), and the surface oxygen can migrate into and refill these subsurface sites after the consumption of subsurface oxygen by the reaction with CO. This finding provides a new reaction pathway for CO oxidation on silver catalyst. (C) 2004 Published by Elsevier Inc.
Resumo:
HSAPO-34 molecular sieve was employed in chloromethane conversion and showed high performance in activity and selectivity in production of light olefins. Our detailed IR investigation allowed the identification of the active sites and the adsorbed species and demonstrated that the conversion started from 350 degrees C with alkoxy group as the intermediate. The fixed-bed catalytic testing evidenced that in the range of 350-500 degrees C, 70-80% of chloromethane was transferred to ethylene, propylene and butenes. Increasing reaction temperature favors the conversion and enhances the yield of lighter olefins. A very important reversible phenomenon, the breaking of Al-O-P bonds upon adsorption of HCl, a main product of reaction to generate a large amount of P-OH groups and the recovery of Al-O-P upon removal of HCI was revealed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In the present investigation, the electrochemically-assisted oxidation of benzene in a H-2-O-2 proton exchange membrane fuel cell (PEMFC) for electricity and phenol cogeneration is studied. Experiments were carried out in a PEMFC electrochemical reactor using Pd black as cathode electrocatalyst at 60 and 80 degrees C, respectively and 1 atm back pressure. Indeed, it was found that the only product detected under the examined experimental conditions was phenol. The online GC product analysis revealed that it is impossible to produce phenol when the fuel cell circuit is open (I = 0) under all the examined experimental conditions. When the fuel cell circuit was closed, however, the phenol yield was found to follow a volcano-type dependence on the cur-rent of the external circuit. It was found that the maximum phenol yield was 0.35% at 100 mA/cm(2) at 80 degrees C. At the same time, the PEMFC performance was also investigated during the phenol generation process. Furthermore, experiments with the rotating ring disc electrode (RRDE) technique showed that the intermediate oxidation product, i.e. H2O2 existed during the oxygen electro-reduction process. The cyclic voltammograms showed that benzene was strongly adsorbed on the Pd surface, leading to a degradation of the PEMFC performance. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Copper phthalocyanine on InSb(111)A?interface bonding, growth mode and energy band alignment, D.A. Evans, H.J. Steiner, S. Evans, R. Middleton, T.S. Jones, S. Park, T.U. Kampen, D.R.T. Zahn, G. Cabailh and I.T. McGovern, J. Phys.: Condens. Matter, 15, S2729?S2740, (2003)
Resumo:
High-permittivity ("high-k") dielectric materials are used in the transistor gate stack in integrated circuits. As the thickness of silicon oxide dielectric reduces below 2 nm with continued downscaling, the leakage current because of tunnelling increases, leading to high power consumption and reduced device reliability. Hence, research concentrates on finding materials with high dielectric constant that can be easily integrated into a manufacturing process and show the desired properties as a thin film. Atomic layer deposition (ALD) is used practically to deposit high-k materials like HfO2, ZrO2, and Al2O3 as gate oxides. ALD is a technique for producing conformal layers of material with nanometer-scale thickness, used commercially in non-planar electronics and increasingly in other areas of science and technology. ALD is a type of chemical vapor deposition that depends on self-limiting surface chemistry. In ALD, gaseous precursors are allowed individually into the reactor chamber in alternating pulses. Between each pulse, inert gas is admitted to prevent gas phase reactions. This thesis provides a profound understanding of the ALD of oxides such as HfO2, showing how the chemistry affects the properties of the deposited film. Using multi-scale modelling of ALD, the kinetics of reactions at the growing surface is connected to experimental data. In this thesis, we use density functional theory (DFT) method to simulate more realistic models for the growth of HfO2 from Hf(N(CH3)2)4/H2O and HfCl4/H2O and for Al2O3 from Al(CH3)3/H2O.Three major breakthroughs are discovered. First, a new reaction pathway, ’multiple proton diffusion’, is proposed for the growth of HfO2 from Hf(N(CH3)2)4/H2O.1 As a second major breakthrough, a ’cooperative’ action between adsorbed precursors is shown to play an important role in ALD. By this we mean that previously-inert fragments can become reactive once sufficient molecules adsorb in their neighbourhood during either precursor pulse. As a third breakthrough, the ALD of HfO2 from Hf(N(CH3)2)4 and H2O is implemented for the first time into 3D on-lattice kinetic Monte-Carlo (KMC).2 In this integrated approach (DFT+KMC), retaining the accuracy of the atomistic model in the higher-scale model leads to remarkable breakthroughs in our understanding. The resulting atomistic model allows direct comparison with experimental techniques such as X-ray photoelectron spectroscopy and quartz crystal microbalance.
Resumo:
Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4–H2O and HfCl4–H2O and growth of Al2O3 from Al(CH3)3–H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this ‘cooperative’ mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD.
Resumo:
The description of the monolayer formed at Au(1 1 1) by 2-mercaptobenzimidazole (MBI) under potential control has been based on electrochemical data (charge measurements) and spectroscopic information from the subtractively normalized interfacial Fourier transform infrared spectroscopy method (SNIFTIRS). From the quantitative analysis of the SNIFTIR spectra, a surface coverage Γ/Γmax was extracted for each sample potential. The evolution of the coverage with potential was in full agreement with the charge density curve. The shift of the pzc in the presence of MBI indicates that the adsorbed molecules have a nonzero component of the permanent dipole moment in the direction perpendicular to the electrode surface. Thanks to the high quality of the spectra, it was possible to determine the orientation of MBI molecules at the surface in the monolayer and submonolayer range. The angle between the C2-axis of the molecule and the direction normal to the surface is close to 64 ± 4° and its small change (<15°) with potential indicates that the orientation of the molecules is chiefly controlled by the chemical interaction between the sulphur atom and the gold surface. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The behaviour of a self-assembled monolayer of 2-mercaptobenzimidazole (MBI) at the Au(111) electrode has been examined using cyclic voltammetry and in situ FTIR spectroscopy. The charge associated with the reductive desorption is pH independent while the oxidative partial redeposition charge increases when the pH is lowered. This is due to differences between the nature and the solubility of the MBI desorption product. In alkaline and neutral media MBI desorbs as the thiolate. In contrast, in acidic solutions the thiol is the desorbed product. Subtractively normalized interfacial reflection Fourier transform absorption spectroscopy (SNIFTIRS) has been applied to investigate the MBI monolayer in contact with aqueous solutions of different pH. The SNIFTIRS data are in agreement with the electrochemical results. Moreover, quantitative analysis of the IR data provided evidence that adsorbed MBI molecules assume a tilted orientation with an angle of 60±5° between the C2 axis of the molecule and the direction normal to the gold surface. © 2003 Elsevier B.V. All rights reserved.
Resumo:
(1)H NMR spectroscopy is used to investigate a series of microporous activated carbons derived from a poly(ether ether ketone) (PEEK) precursor with varying amounts of burnoff (BO). In particular, properties relevant to hydrogen storage are evaluated such as pore structure, average pore size, uptake, and binding energy. High-pressure NMR with in situ H(2) loading is employed with H(2) pressure ranging from 100 Pa to 10 MPa. An N(2)-cooled cryostat allows for NMR isotherm measurements at both room temperature ( approximately 290 K) and 100 K. Two distinct (1)H NMR peaks appear in the spectra which represent the gaseous H(2) in intergranular pores and the H(2) residing in micropores. The chemical shift of the micropore peak is observed to evolve with changing pressure, the magnitude of this effect being correlated to the amount of BO and therefore the structure. This is attributed to the different pressure dependence of the amount of adsorbed and non-adsorbed molecules within micropores, which experience significantly different chemical shifts due to the strong distance dependence of the ring current effect. In pores with a critical diameter of 1.2 nm or less, no pressure dependence is observed because they are not wide enough to host non-adsorbed molecules; this is the case for samples with less than 35% BO. The largest estimated pore size that can contribute to the micropore peak is estimated to be around 2.4 nm. The total H(2) uptake associated with pores of this size or smaller is evaluated via a calibration of the isotherms, with the highest amount being observed at 59% BO. Two binding energies are present in the micropores, with the lower, more dominant one being on the order of 5 kJ mol(-1) and the higher one ranging from 7 to 9 kJ mol(-1).
Resumo:
BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells.
Resumo:
The vibrational properties of the 2-mercaptobenzimidazole (MBI) molecule in interaction with gold were examined by a combined approach of FTIR measurements and density functional theory (DFT). A complete assignment of the 42 normal modes of MBI has been performed on the basis of DFT calculations at the B3PW91 level in complement to the Raman and FTIR spectra. Calculations demonstrated that, on the deprotonated MBI molecule, the negative charge is localized on the sulfur atom, favoring the formation of a gold-sulfur bond upon reaction of MBI with gold. This was confirmed by the very good agreement between the calculated spectrum and the experimental spectra of different gold-MBI compounds, indicating that the vibrational properties of adsorbed MBI are chiefly determined by the coordination through the sulfur atom. © 2006 American Chemical Society.
Resumo:
p.253-262
Resumo:
The adsorption of a C60 monolayer on a graphite substrate was modelled via molecular dynamics simulation covering a significant period of 160 picoseconds. The final configuration of C60s agrees closely with that observed in a scanning tunnelling microscopy (STM) experiment. Clusters of adsorbed molecules were then selected and their STM-like images were computed via the Keldysh Green function method.