948 resultados para accelerated aging
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
The corrosion of steel reinforcement in an aging highway infrastructure is a major problem currently facing the transportation engineering community. In the United States alone, maintenance and replacement costs for deficient bridges are measured in billions of dollars. The application of corrosion-resistant steel reinforcement as an alternative reinforcement to existing mild steel reinforced concrete bridge decks has potential to mitigate corrosion problems, due to the fundamental properties associated with the materials. To investigate corrosion prevention through the use of corrosion-resistant alloys, the performance of corrosion resistance of MMFX microcomposite steel reinforcement, a high-strength, high-chromium steel reinforcement, was evaluated. The study consisted of both field and laboratory components conducted at the Iowa State University Bridge Engineering Center to determine whether MMFX reinforcement provides superior corrosion resistance to epoxy-coated mild steel reinforcement in bridge decks. Because definitive field evidence of the corrosion resistance of MMFX reinforcement may require several years of monitoring, strict attention was given to investigating reinforcement under accelerated conditions in the laboratory, based on typical ASTM and Rapid Macrocell accelerated corrosion tests. After 40 weeks of laboratory testing, the ASTM ACT corrosion potentials indicate that corrosion had not initiated for either MMFX or the as-delivered epoxy-coated reinforcement. Conversely, uncoated mild steel specimens underwent corrosion within the fifth week, while epoxy-coated reinforcement specimens with induced holidays underwent corrosion between 15 and 30 weeks. Within the fifth week of testing, the Rapid Macrocell ACT produced corrosion risk potentials that indicate active corrosion for all reinforcement types tested. While the limited results from the 40 weeks of laboratory testing may not constitute a prediction of life expectancy and life-cycle cost, a procedure is presented herein to determine life expectancy and associated life-cycle costs.
Resumo:
A fluctuation relation for aging systems is introduced and verified by extensive numerical simulations. It is based on the hypothesis of partial equilibration over phase-space regions in a scenario of entropy-driven relaxation. The relation provides a simple alternative method, amenable of experimental implementation, to measure replica symmetry breaking parameters in aging systems. The connection with the effective temperatures obtained from the fluctuation-dissipation theorem is discussed
Resumo:
This plan outlines the activities and strategies that the IDA will purse to achieve its goals, objectives, and expected outcomes in modernizing Iowa’s aging network. The goals that will move Iowa’s state plan.
Resumo:
The objectives of this work were to determine whether and at which seed physiological maturity stage the diquat desiccant affects the tall oat-grass (Arrhenatherum elatius) seed quality and yield, as well as the proper storage period between harvest and sowing. Diquat desiccation was evaluated in applications during milk or dough seed maturation stages. Seeds conventionally produced and stored under traditional storage conditions were used for the analyses. Seed samples were drawn every 30th day after harvest (DAH). After the 240th DAH, samples were drawn every 90th day up the to 690th DAH. The highest yield were obtained by desiccation applied at the beginning of the seed dough stage, with a satisfactory seed quality. Both final germination and seedling growth parameters achieved their maximum values between 180th and 240th DAH. Oat-grass seeds preserved satisfactory level of final germination (75%) up to 420th DAH. The application of diquat desiccant at the beginning of seed dough maturity stage can be a good solution for seed production of tall oat-grass. Early spring is the best sowing period for freshly harvested seeds of tall oat-grass regarding germination and seedling growth.
Resumo:
This report was prepared as a directive to Aging and Disability Resource Centers and The Mental Health and Disability Commission to jointly develop a plan for a home modification assistance program to provide grants and individual income tax credits to assist with expenses related to the making or permanent home modifications that permit individual with a disability to remain in the homes.
Resumo:
The formation of toxic protein aggregates is a common denominator to many neurodegenerative diseases and aging. Accumulation of toxic, possibly infectious protein aggregates induces a cascade of events, such as excessive inflammation, the production of reactive oxygen species, apoptosis and neuronal loss. A network of highly conserved molecular chaperones and of chaperone-related proteases controls the fold-quality of proteins in the cell. Most molecular chaperones can passively prevent protein aggregation by binding misfolding intermediates. Some molecular chaperones and chaperone-related proteases, such as the proteasome, can also hydrolyse ATP to forcefully convert stable harmful protein aggregates into harmless natively refoldable, or protease-degradable, polypeptides. Molecular chaperones and chaperone-related proteases thus control the delicate balance between natively folded functional proteins and aggregation-prone misfolded proteins, which may form during the lifetime and lead to cell death. Abundant data now point at the molecular chaperones and the proteases as major clearance mechanisms to remove toxic protein aggregates from cells, delaying the onset and the outcome of protein-misfolding diseases. Therapeutic approaches include treatments and drugs that can specifically induce and sustain a strong chaperone and protease activity in cells and tissues prone to toxic protein aggregations.
Resumo:
As the American population continues to grow older, aging and sexuality has become a frequent topic of discussion. Specifically, questions have been raised about if and how older adults experience sexual desire; how dementia and other age-related health issues impact an individual’s ability to express desire for and consent to sexual acts; and whether older adults forfeit their right to intimacy once they move into a long-term care facility. By federal law, individuals residing in long-term care are afforded multiple rights, many of which are relevant to sexuality. These rights include but are not limited to: the rights to privacy, confidentiality, dignity and respect; the right to make independent choices; and the right to choose visitors and meet in a private location. The OSLTCO strives to preserve these rights by promoting attitudes of awareness, acceptance, and respect of sexual diversity.
Resumo:
An animal's survival strongly depends on its ability to maintain homeostasis in response to the changing quality of its external and internal environment. This is achieved through intracellular and intercellular communication within and among different tissues. One of the organ systems that plays a major role in this communication and the maintenance of homeostasis is the nervous system. Here we highlight different aspects of the neuronal inputs and outputs of pathways that affect aging and longevity. Accordingly, we discuss how sensory inputs influence homeostasis and lifespan through the modulation of different types of neuronal signals, which reflects the complexity of the environmental cues that affect physiology. We also describe feedback, compensatory, and feed-forward mechanisms in these longevity-modulating pathways that are necessary for homeostasis. Finally, we consider the temporal requirements for these neuronal processes and the potential role of natural genetic variation in shaping the neurobiology of aging.
Resumo:
In bottom-up proteomics, rapid and efficient protein digestion is crucial for data reliability. However, sample preparation remains one of the rate-limiting steps in proteomics workflows. In this study, we compared the conventional trypsin digestion procedure with two accelerated digestion protocols based on shorter reaction times and microwave-assisted digestion for the preparation of membrane-enriched protein fractions of the human pathogenic bacterium Staphylococcus aureus. Produced peptides were analyzed by Shotgun IPG-IEF, a methodology relying on separation of peptides by IPG-IEF before the conventional LC-MS/MS steps of shotgun proteomics. Data obtained on two LC-MS/MS platforms showed that accelerated digestion protocols, especially the one relying on microwave irradiation, enhanced the cleavage specificity of trypsin and thus improved the digestion efficiency especially for hydrophobic and membrane proteins. The combination of high-throughput proteomics with accelerated and efficient sample preparation should enhance the practicability of proteomics by reducing the time from sample collection to obtaining the results.
Resumo:
OBJECTIVES. This study examines the relationship between self-perception of aging and vulnerability to adverse outcomes in adults aged 65-70 years using data from a cohort of 1,422 participants in Lausanne, Switzerland. METHODS: A positive or negative score of perception of aging was established using the Attitudes Toward Own Aging subscale including 5 items of the Philadelphia Geriatric Center Morale Scale. Falls, hospitalizations, and difficulties in basic and instrumental activities of daily living (ADL) collected in the first 3 years of follow-up were considered adverse outcomes. The relationship between perception and outcomes were evaluated using multiple logistic regression models adjusting for chronic medical conditions, depressive feelings, living arrangement, and socioeconomic characteristics. RESULTS: The strongest associations of self-perception of aging with outcomes were observed for basic and instrumental ADL. Associations with falls and hospitalizations were not constant but could be explained by health characteristics. CONCLUSIONS: A negative self-perception of aging is an indicator of risk for future disability in ADL. Factors such as a low-economic status, living alone, multiple chronic medical conditions, and depressive feelings contribute to a negative self-perception of aging but do not explain the relationship with incident activities of daily living disability.
Resumo:
OBJECTIVE: This study was undertaken to investigate how aging affects dermal microvascular reactivity in skin areas differentially exposed to sunlight, and therefore to different degrees of photoaging. METHODS: We assessed, in young (18-30 years, n = 13) and aged males (≥60 years, n = 13), the thigh, forearm, and forehead's skin vasodilatory response to local heating (LTH) with a LDI. In each subject and at each location, local Tskin was brought from 34°C (baseline) to 39 or 41°C for 30 minutes, to effect submaximal vasodilation, with maximal vasodilation then elicited by further heating to 44°C. RESULTS: The CVCs evaluated at baseline and after maximal vasodilation (CVCmax ) were higher in the forehead than in the two other anatomical locations. On all locations, CVCmax decreased with age but less markedly in the forehead compared to the two other locations. When expressed in % of CVCmax , the plateau increase of CVCs in response to submaximal temperatures (39 and 41°C) did not vary with age, and minimally so with location. CONCLUSION: Skin aging, whether intrinsic or combined with photoaging, reduces the maximal vasodilatory capacity of the dermal microcirculation, but not its reactivity to local heating.
Resumo:
The failure of current strategies to provide an explanation for controversial findings on the pattern of pathophysiological changes in Alzheimer's Disease (AD) motivates the necessity to develop new integrative approaches based on multi-modal neuroimaging data that captures various aspects of disease pathology. Previous studies using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) report controversial results about time-line, spatial extent and magnitude of glucose hypometabolism and atrophy in AD that depend on clinical and demographic characteristics of the studied populations. Here, we provide and validate at a group level a generative anatomical model of glucose hypo-metabolism and atrophy progression in AD based on FDG-PET and sMRI data of 80 patients and 79 healthy controls to describe expected age and symptom severity related changes in AD relative to a baseline provided by healthy aging. We demonstrate a high level of anatomical accuracy for both modalities yielding strongly age- and symptom-severity- dependant glucose hypometabolism in temporal, parietal and precuneal regions and a more extensive network of atrophy in hippocampal, temporal, parietal, occipital and posterior caudate regions. The model suggests greater and more consistent changes in FDG-PET compared to sMRI at earlier and the inversion of this pattern at more advanced AD stages. Our model describes, integrates and predicts characteristic patterns of AD related pathology, uncontaminated by normal age effects, derived from multi-modal data. It further provides an integrative explanation for findings suggesting a dissociation between early- and late-onset AD. The generative model offers a basis for further development of individualized biomarkers allowing accurate early diagnosis and treatment evaluation.