988 resultados para Z-source


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文提出了最近研制成功的数字化 M-Z 干涉系统,并用它对二维低密度混合流场的密度场进行了测量。由于该系统采用了激光光源以及干涉图的计算机处理技术,使得实验和数据处理的工作自动化,而且具有精度高的特点,适用于低密度混合流场中较弱信号的高精度测量。文中系统地分析了用激光作光源的条件下,M-Z 干涉系统对平行光扩束系统的要求,以及如何消除因激光干涉性太强而引起的寄生干涉条纹,通过对平行式半透半反镜的分析,给出了适用于 M-Z 干涉仪的平行式半透半反镜的具体设计参数,并简述了由于使用激光光源而简化仪器调节的原理,给出了一种使经典 M-Z 干涉仪与现代计算机技术相结合来提高测量精度的新方法。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<正> 一、前言电气石是一种斜角棱形压电晶体,z轴为它的电轴。它是一种天然晶体(目前已出现人造电气石晶体)。它的特点是:压电性能稳定;侧向灵敏度(指在x或y轴向加以单位载荷时在z平面上产生的电荷,即d_(31))小;机械强度高;对温度比较敏感,因而电气石作为流体静

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using spatially averaged global model, we succeed in obtaining some plasma parameters for a low pressure inductively coupled plasma source of our laboratory. As far as the global balance is concerned, the models can give reasonable results of the parameters, such as the global electron temperature and the ion impacting energy, etc. It is found that the ion flow is hardly affected by the neutral gas pressure. Finally, the magnetic effects are calculated by means of the method. The magnetic field can play an important role to increase plasma density and ion current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.