562 resultados para Workflow
Resumo:
Crosswell data set contains a range of angles limited only by the geometry of the source and receiver configuration, the separation of the boreholes and the depth to the target. However, the wide angles reflections present in crosswell imaging result in amplitude-versus-angle (AVA) features not usually observed in surface data. These features include reflections from angles that are near critical and beyond critical for many of the interfaces; some of these reflections are visible only for a small range of angles, presumably near their critical angle. High-resolution crosswell seismic surveys were conducted over a Silurian (Niagaran) reef at two fields in northern Michigan, Springdale and Coldspring. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. Combining the results from images obtained from above with those from beneath provides additional information, by exhibiting ranges of angles that are different for the two images, especially for reflectors at shallow depths, and second, by providing additional constraints on the solutions for Zoeppritz equations. Inversion of seismic data for impedance has become a standard part of the workflow for quantitative reservoir characterization. Inversion of crosswell data using either deterministic or geostatistical methods can lead to poor results with phase change beyond the critical angle, however, the simultaneous pre-stack inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Deterministic inversion is designed to yield only a single model of elastic properties (best-fit), while the geostatistical inversion produces multiple models (realizations) of elastic properties, lithology and reservoir properties. Geostatistical inversion produces results with far more detail than deterministic inversion. The magnitude of difference in details between both types of inversion becomes increasingly pronounced for thinner reservoirs, particularly those beyond the vertical resolution of the seismic. For any interface imaged from above and from beneath, the results AVA characters must result from identical contrasts in elastic properties in the two sets of images, albeit in reverse order. An inversion approach to handle both datasets simultaneously, at pre-critical angles, is demonstrated in this work. The main exploration problem for carbonate reefs is determining the porosity distribution. Images of elastic properties, obtained from deterministic and geostatistical simultaneous inversion of a high-resolution crosswell seismic survey were used to obtain the internal structure and reservoir properties (porosity) of Niagaran Michigan reef. The images obtained are the best of any Niagaran pinnacle reef to date.
Resumo:
Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.
A Digital Collection Center's Experience: ETD Discovery, Promotion, and Workflows in Digital Commons
Resumo:
This presentation was given at the Digital Commons Southeastern User Group conference at Winthrop University, South Carolina on June 5, 2015. The presentation discusses how the digital collections center (DCC) at Florida International University uses Digital Commons as their tool for ingesting, editing, tracking, and publishing university theses and dissertations. The basic DCC workflow is covered as well as institutional repository promotion.
Resumo:
Concurrent software executes multiple threads or processes to achieve high performance. However, concurrency results in a huge number of different system behaviors that are difficult to test and verify. The aim of this dissertation is to develop new methods and tools for modeling and analyzing concurrent software systems at design and code levels. This dissertation consists of several related results. First, a formal model of Mondex, an electronic purse system, is built using Petri nets from user requirements, which is formally verified using model checking. Second, Petri nets models are automatically mined from the event traces generated from scientific workflows. Third, partial order models are automatically extracted from some instrumented concurrent program execution, and potential atomicity violation bugs are automatically verified based on the partial order models using model checking. Our formal specification and verification of Mondex have contributed to the world wide effort in developing a verified software repository. Our method to mine Petri net models automatically from provenance offers a new approach to build scientific workflows. Our dynamic prediction tool, named McPatom, can predict several known bugs in real world systems including one that evades several other existing tools. McPatom is efficient and scalable as it takes advantage of the nature of atomicity violations and considers only a pair of threads and accesses to a single shared variable at one time. However, predictive tools need to consider the tradeoffs between precision and coverage. Based on McPatom, this dissertation presents two methods for improving the coverage and precision of atomicity violation predictions: 1) a post-prediction analysis method to increase coverage while ensuring precision; 2) a follow-up replaying method to further increase coverage. Both methods are implemented in a completely automatic tool.
Resumo:
Building Information Modeling (BIM) concept is able to reshape each AEC project and the industry in general, offering a comprehensive collaboration process over a model of structure with regularly actualized and synchronized information. This report presents an overview of BIM with focus on its core concepts, applications in the project life cycle and benefits for project stakeholders through four case studies carried out during the internship in the engineering office NEWTON - Engineering Consultancy Company. The aim of the four cases studies was to cover multidisciplinary and varied projects. The first case study highlights the engineering project’s workflow and presents a comparison of traditional procedures and BIM concepts applied on the rehabilitation of an existing building. In the second and third case study, attention is focused on the goals achieved, particularly by structural engineer, due to the implementation of the mentioned technology on a full-lifecycle BIM project of a small residence and a complex project of residential building in Porto and on its architectural integration. In addition, through the fourth case study, the spatial coordination of Mechanical, Electrical and Plumbing (MEP) systems at a large-scale hotel project has been analyzed and accomplished, highlighting merits of BIM at this project stage. Through a reduction of the space used for facilities and infrastructures and the ability to identify conflicts and to nullify the related costs, its advantage for a complex building was proved.
Resumo:
Introduction: There has been a continuous development of new technologies in healthcare that are derived from national quality registries. However, this innovation needs to be translated into the workflow of healthcare delivery, to enable children with long-term conditions to get the best support possible to manage their health during everyday life. Since children living with long-term conditions experience different interference levels in their lives, healthcare professionals need to assess the impact of care on children’s day-to-day lives, as a complement to biomedical assessments. Aim: The overall aim of this thesis was to explore and describe the use of instruments about health-related quality of life (HRQOL) in outpatient care for children with long-term conditions on the basis of a national quality registry system. Methods: The research was conducted by using comparative, cross-sectional and explorative designs and data collection was performed by using different methods. The questionnaire DISABKIDS Chronic Generic Measure -37 was used as well as semi-structured interviews and video-recordings from consultations. Altogether, 156 children (8–18 years) and nine healthcare professionals participated in the studies. Children with Type 1 Diabetes (T1D) (n 131) answered the questionnaire DISABKIDS and children with rheumatic diseases, kidney diseases and T1D (n 25) were interviewed after their consultation at the outpatient clinic after the web-DISABKIDS had been used. In total, nine healthcare professionals used the HRQOL instrument as an assessment tool during the encounters which was video-recorded (n 21). Quantitative deductive content analysis was used to describe content in different HRQOL instruments. Statistical inference was used to analyse results from DISABKIDS and qualitative content analysis was used to analyse the interviews and video-recordings. Results: The findings showed that based on a biopsychosocial perspective, both generic and disease-specific instruments should be used to gain a comprehensive evaluation of the child’s HRQOL. The DISABKIDS instrument is applicable when describing different aspects of health concerning children with T1D. When DISABKIDS was used in the encounters, children expressed positive experiences about sharing their results with the healthcare professional. It was discovered that different approaches led to different outcomes for the child when the healthcare professionals were using DISABKIDS during the encounter. When an instructing approach is used, the child’s ability to learn more about their health and how to improve their health is limited. When an inviting or engaging approach is used by the professional, the child may become more involved during the conversations. Conclusions: It could be argued that instruments of HRQOL could be used as a complement to biomedical variables, to promote a biopsychosocial perspective on the child’s health. According to the children in this thesis, feedback on their results after answering to web-DISABKIDS is important, which implies that healthcare professionals need to prioritize time for discussions about results from HRQOL instruments in the encounters. If healthcare professionals involve the child in the discussion of the results of the HRQOL, misinterpreted answers could be corrected during the conversation. Concurrently, this claims that healthcare professionals invite and engage the child.
Resumo:
Background: Physician-rating websites have become a popular tool to create more transparency about the quality of health care providers. So far, it remains unknown whether online-based rating websites have the potential to contribute to a better standard of care. Objective: Our goal was to examine which health care providers use online rating websites and for what purposes, and whether health care providers use online patient ratings to improve patient care. Methods: We conducted an online-based cross-sectional study by surveying 2360 physicians and other health care providers (September 2015). In addition to descriptive statistics, we performed multilevel logistic regression models to ascertain the effects of providers' demographics as well as report card-related variables on the likelihood that providers implement measures to improve patient care. Results: Overall, more than half of the responding providers surveyed (54.66%, 1290/2360) used online ratings to derive measures to improve patient care (implemented measures: mean 3.06, SD 2.29). Ophthalmologists (68%, 40/59) and gynecologists (65.4%, 123/188) were most likely to implement any measures. The most widely implemented quality measures were related to communication with patients (28.77%, 679/2360), the appointment scheduling process (23.60%, 557/2360), and office workflow (21.23%, 501/2360). Scaled-survey results had a greater impact on deriving measures than narrative comments. Multilevel logistic regression models revealed medical specialty, the frequency of report card use, and the appraisal of the trustworthiness of scaled-survey ratings to be significantly associated predictors for implementing measures to improve patient care because of online ratings. Conclusions: Our results suggest that online ratings displayed on physician-rating websites have an impact on patient care. Despite the limitations of our study and unintended consequences of physician-rating websites, they still may have the potential to improve patient care.