846 resultados para Whole genome sequencing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Current methods to find significantly under- and over-represented gene ontology (GO) terms in a set of genes consider the genes as equally probable balls in a bag, as may be appropriate for transcripts in micro-array data. However, due to the varying length of genes and intergenic regions, that approach is inappropriate for deciding if any GO terms are correlated with a set of genomic positions. Results: We present an algorithm - GONOME - that can determine which GO terms are significantly associated with a set of genomic positions given a genome annotated with (at least) the starts and ends of genes. We show that certain GO terms may appear to be significantly associated with a set of randomly chosen positions in the human genome if gene lengths are not considered, and that these same terms have been reported as significantly over-represented in a number of recent papers. This apparent over-representation disappears when gene lengths are considered, as GONOME does. For example, we show that, when gene length is taken into account, the term development is not significantly enriched in genes associated with human CpG islands, in contradiction to a previous report. We further demonstrate the efficacy of GONOME by showing that occurrences of the proteosome-associated control element (PACE) upstream activating sequence in the S. cerevisiae genome associate significantly to appropriate GO terms. An extension of this approach yields a whole-genome motif discovery algorithm that allows identification of many other promoter sequences linked to different types of genes, including a large group of previously unknown motifs significantly associated with the terms 'translation' and 'translational elongation'. Conclusion: GONOME is an algorithm that correctly extracts over-represented GO terms from a set of genomic positions. By explicitly considering gene size, GONOME avoids a systematic bias toward GO terms linked to large genes. Inappropriate use of existing algorithms that do not take gene size into account has led to erroneous or suspect conclusions. Reciprocally GONOME may be used to identify new features in genomes that are significantly associated with particular categories of genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Late summer 1999, an outbreak of human encephalitis occurred in the northeastern United States that was concurrent with extensive mortality in crows (Corvus species) as well as the deaths of several exotic birds at a zoological park in the same area. Complete genome sequencing of a flavivirus isolated from the brain of a dead Chilean flamingo (Phoenicopterus chilensis), together with partial sequence analysis of envelope glycoprotein (E-glycoprotein) genes amplified from several other species including mosquitoes and two fatal human cases, revealed that West Nile (WN) virus circulated in natural transmission cycles and was responsible for the human disease. Antigenic mapping with E-glycoprotein-specific monoclonal antibodies and E-glycoprotein phylogenetic analysis confirmed these viruses as WN. This North American WN virus was most closely related to a WN virus isolated from a dead goose in Israel in 1998.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Representational difference analysis (RDA) has great potential for preferential amplification of unique but uncharacterised DNA sequences present in one source such as a whole genome, but absent from a related genome or other complex population of sequences. While a few examples of its successful exploitation have been published, the method has not been well dissected and robust, detailed published protocols are lacking. Here we examine the method in detail, suggest improvements and provide a protocol that has yielded key unique sequences from a pathogenic bacterial genome. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Propionibacterium acnes is a Gram-positive bacterium that forms part of the normal flora of the skin, oral cavity, large intestine, the conjunctiva and the external ear canal. Although primarily recognized for its role in acne, P. acnes is an opportunistic pathogen, causing a range of postoperative and device-related infections. These include infections of the bones and joints, mouth, eye and brain. Device-related infections include those of joint prostheses, shunts and prosthetic heart valves. P. acnes may play a role in other conditions, including inflammation of the prostate leading to cancer, SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome, sarcoidosis and sciatica. If an active role in these conditions is established there are major implications for diagnosis, treatment and protection. Genome sequencing of the organism has provided an insight into the pathogenic potential and virulence of P. acnes. © 2011 Expert Reviews Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British Pakistani-heritage adults with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of gene function (knockouts) in 781 genes. We observed 13.7% fewer than expected homozygous knockout genotypes, implying an average load of 1.6 recessive-lethal-equivalent LOF variants per adult. Linking genetic data to lifelong health records, knockouts were not associated with clinical consultation or prescription rate. In this dataset we identified a healthy PRDM9 knockout mother, and performed phased genome sequencing on her, her child and controls, which showed meiotic recombination sites localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform upon essential genetic loci, and demonstrate PRDM9 redundancy in humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatiotemporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the hallmarks of bacterial survival is their ability to adapt rapidly to changing environmental conditions. Niche adaptation is a response to the signals received that are relayed, often to regulators that modulate gene expression. In the post-genomic era, DNA microarrays are used to study the dynamics of gene expression on a global scale. Numerous studies have used Pseudomonas aeruginosa--a Gram-negative environmental and opportunistic human pathogenic bacterium--as the model organism in whole-genome transcriptome analysis. This paper reviews the transcriptome studies that have led to immense advances in our understanding of the biology of this intractable human pathogen. Comparative analysis of 23 P. aeruginosa transcriptome studies has led to the identification of a unique set of genes that are signal specific and a core set that is differentially regulated. The 303 genes in the core set are involved in bacterial homeostasis, making them attractive therapeutic targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatio-temporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acknowledgements This study was supported by a grant from the Biotechnology and Biological Sciences Research Council (BBSRC, BB/H008063/1), UK to DGH and SAM. Funding also came from Research Council Norway for project number 241016 for DGH and EJ. This work was carried out as part of a PhD thesis funded by the Marine Alliance of Science and Technology Scotland (MASTS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Jean Weissenbach, telephone interview by Kathryn Maxson and Robert Cook-Deegan, conducted from Durham, NC 09 February 2012. Jean Weissenbach, a leader in French genetic mapping, directed the French national sequencing center, Généthon, during the HGP and was instrumental in helping to build agreement to the Bermuda Principles in France.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mark Guyer and Jane Peterson, in-person interview with Kathryn Maxson and Robert Cook-Deegan, conducted in Rockville, MD (NIH campus), 18 August 2011. Mark Guyer and Jane Peterson were grants program officers at the NIH during the HGP, and were some of the longest-standing employees in the HGP administrative structure. Both witnessed the transformation of the Office of Genome Research into the National Center for Human Genome Research and, finally, the National Human Genome Research Institute. They were close participants in the history of the Bermuda Principles within the NIH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Endopolyploid cells (hereafter - polyploid cells), which contain whole genome duplications in an otherwise diploid organism, play vital roles in development and physiology of diverse organs such as our heart and liver. Polyploidy is also observed with high frequency in many tumors, and division of such cells frequently creates aneuploidy (chromosomal imbalances), a hallmark of cancer. Despite its frequent occurrence and association with aneuploidy, little is known about the specific role that polyploidy plays in diverse contexts. Using a new model tissue, the Drosophila rectal papilla, we sought to uncover connections between polyploidy and aneuploidy during organ development. Our lab previously discovered that the papillar cells of the Drosophila hindgut undergo developmentally programmed polyploid cell divisions, and that these polyploid cell divisions are highly error-prone. Time-lapse studies of polyploid mitosis revealed that the papillar cells undergo a high percentage of tripolar anaphase, which causes extreme aneuploidy. Despite this massive chromosome imbalance, we found the tripolar daughter cells are viable and support normal organ development and function, suggesting acquiring extra genome sets enables a cell to tolerate the genomic alterations incurred by aneuploidy. We further extended these findings by seeking mechanisms by which the papillar cells tolerated this resultant aneuploidy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Valuable genetic variation for bean breeding programs is held within the common bean secondary gene pool which consists of Phaseolus albescens, P. coccineus, P. costaricensis, and P. dumosus. However, the use of close relatives for bean improvement is limited due to the lack of knowledge about genetic variation and genetic plasticity of many of these species. Characterisation and analysis of the genetic diversity is necessary among beans' wild relatives; in addition, conflicting phylogenies and relationships need to be understood and a hypothesis of a hybrid origin of P. dumosus needs to be tested. This thesis research was orientated to generate information about the patterns of relationships among the common bean secondary gene pool, with particular focus on the species Phaseolus dumosus. This species displays a set of characteristics of agronomic interest, not only for the direct improvement of common bean but also as a source of valuable genes for adaptation to climate change. Here I undertake the first comprehensive study of the genetic diversity of P. dumosus as ascertained from both nuclear and chloroplast genome markers. A germplasm collection of the ancestral forms of P. dumosus together with wild, landrace and cultivar representatives of all other species of the common bean secondary gene pool, were used to analyse genetic diversity, phylogenetic relationships and structure of P. dumosus. Data on molecular variation was generated from sequences of cpDNA loci accD-psaI spacer, trnT-trnL spacer, trnL intron and rps14-psaB spacer and from the nrDNA the ITS region. A whole genome DArT array was developed and used for the genotyping of P. dumosus and its closes relatives. 4208 polymorphic markers were generated in the DArT array and from those, 742 markers presented a call rate >95% and zero discordance. DArT markers revealed a moderate genetic polymorphism among P. dumosus samples (13% of polymorphic loci), while P. coccineus presented the highest level of polymorphism (88% of polymorphic loci). At the cpDNA one ancestral haplotype was detected among all samples of all species in the secondary genepool. The ITS region of P. dumosus revealed high homogeneity and polymorphism bias to P. coccineus genome. Phylogenetic reconstructions made with Maximum likelihood and Bayesian methods confirmed previously reported discrepancies among the nuclear and chloroplast genomes of P. dumosus. The outline of relationships by hybridization networks displayed a considerable number of interactions within and between species. This research provides compelling evidence that P. dumosus arose from hybridisation between P. vulgaris and P. coccineus and confirms that P. costaricensis has likely been involved in the genesis or backcrossing events (or both) in the history of P. dumosus. The classification of the specie P. persistentus was analysed based on cpDNA and ITS sequences, the results found this species to be highly related to P. vulgaris but not too similar to P. leptostachyus as previously proposed. This research demonstrates that wild types of the secondary genepool carry a significant genetic variation which makes this a valuable genetic resource for common bean improvement. The DArT array generated in this research is a valuable resource for breeding programs since it has the potential to be used in several approaches including genotyping, discovery of novel traits, mapping and marker-trait associations. Efforts should be made to search for potential populations of P. persistentus and to increase the collection of new populations of P. dumosus, P. albescens and P. costaricensis that may provide valuable traits for introgression into common bean and other Phaseolus crops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe asthma represents a major unmet clinical need. Eosinophilic inflammation persists in the airways of many patients with uncontrolled asthma, despite high-dose inhaled corticosteroid therapy. Suppressors of cytokine signalling (SOCS) are a family of molecules involved in the regulation of cytokine signalling via inhibition of the Janus kinase-signal transducers and activators of transcription pathway. We examined SOCS expression in the airways of asthma patients and investigated whether this is associated with persistent eosinophilia.

Healthy controls, mild/moderate asthmatics and severe asthmatics were studied. Whole genome expression profiling, quantitative PCR and immunohistochemical analysis were used to examine expression of SOCS1, SOCS2 and SOCS3 in bronchial biopsies. Bronchial epithelial cells were utilised to examine the role of SOCS1 in regulating interleukin (IL)-13 signalling in vitro.

SOCS1 gene expression was significantly lower in the airways of severe asthmatics compared with mild/moderate asthmatics, and was inversely associated with airway eosinophilia and other measures of T-helper type 2 (Th2) inflammation. Immunohistochemistry demonstrated SOCS1 was predominantly localised to the bronchial epithelium. SOCS1 overexpression inhibited IL-13-mediated chemokine ligand (CCL) 26 (eotaxin-3) mRNA expression in bronchial epithelial cells.

Severe asthma patients with persistent airway eosinophilia and Th2 inflammation have reduced airway epithelial SOCS1 expression. SOCS1 inhibits epithelial IL-13 signalling, supporting its key role in regulating Th2-driven eosinophilia in severe asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations.