902 resultados para Web Service Modelling Ontology (WSMO)
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Ontology quality can be affected by the difficulties involved in on-tology modelling which may imply the appearance of anomalies in ontologies. This situation leads to the need of validating ontologies, that is, assessing their quality and correctness. Ontology validation is a key activity in different ontol-ogy engineering scenarios such as development and selection. This paper con-tributes to the ontology validation activity by proposing a web-based tool, called OOPS!, independent of any ontology development environment, for de-tecting anomalies in ontologies. This tool will help developers to improve on-tology quality by automatically detecting potential errors.
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction.
Resumo:
The Web has witnessed an enormous growth in the amount of semantic information published in recent years. This growth has been stimulated to a large extent by the emergence of Linked Data. Although this brings us a big step closer to the vision of a Semantic Web, it also raises new issues such as the need for dealing with information expressed in different natural languages. Indeed, although the Web of Data can contain any kind of information in any language, it still lacks explicit mechanisms to automatically reconcile such information when it is expressed in different languages. This leads to situations in which data expressed in a certain language is not easily accessible to speakers of other languages. The Web of Data shows the potential for being extended to a truly multilingual web as vocabularies and data can be published in a language-independent fashion, while associated language-dependent (linguistic) information supporting the access across languages can be stored separately. In this sense, the multilingual Web of Data can be realized in our view as a layer of services and resources on top of the existing Linked Data infrastructure adding i) linguistic information for data and vocabularies in different languages, ii) mappings between data with labels in different languages, and iii) services to dynamically access and traverse Linked Data across different languages. In this article we present this vision of a multilingual Web of Data. We discuss challenges that need to be addressed to make this vision come true and discuss the role that techniques such as ontology localization, ontology mapping, and cross-lingual ontology-based information access and presentation will play in achieving this. Further, we propose an initial architecture and describe a roadmap that can provide a basis for the implementation of this vision.
Resumo:
Lexica and terminology databases play a vital role in many NLP applications, but currently most such resources are published in application-specific formats, or with custom access interfaces, leading to the problem that much of this data is in ‘‘data silos’’ and hence difficult to access. The Semantic Web and in particular the Linked Data initiative provide effective solutions to this problem, as well as possibilities for data reuse by inter-lexicon linking, and incorporation of data categories by dereferencable URIs. The Semantic Web focuses on the use of ontologies to describe semantics on the Web, but currently there is no standard for providing complex lexical information for such ontologies and for describing the relationship between the lexicon and the ontology. We present our model, lemon, which aims to address these gaps
Resumo:
Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.
Resumo:
In this paper we present the MultiFarm dataset, which has been designed as a benchmark for multilingual ontology matching. The MultiFarm dataset is composed of a set of ontologies translated in different languages and the corresponding alignments between these ontologies. It is based on the OntoFarm dataset, which has been used successfully for several years in the Ontology Alignment Evaluation Initiative (OAEI). By translating the ontologies of the OntoFarm dataset into eight different languages – Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish – we created a comprehensive set of realistic test cases. Based on these test cases, it is possible to evaluate and compare the performance of matching approaches with a special focus on multilingualism.
Resumo:
In this introductory chapter we put in context and give a brief outline of the work that we thoroughly present in the rest of the dissertation. We consider this work divided in two main parts. The first part is the Firenze Framework, a knowledge level description framework rich enough to express the semantics required for describing both semantic Web services and semantic Grid services. We start by defining what the Semantic Grid is and its relation with the Semantic Web; and the possibility of their convergence since both initiatives have become mainly service-oriented. We also introduce the main motivators of the creation of this framework, one is to provide a valid description framework that works at knowledge level; the other to provide a description framework that takes into account the characteristics of Grid services in order to be able to describe them properly. The other part of the dissertation is devoted to Vega, an event-driven architecture that, by means of proposed knowledge level description framework, is able to achieve high scale provisioning of knowledge-intensive services. In this introductory chapter we portrait the anatomy of a generic event-driven architecture, and we briefly enumerate their main characteristics, which are the reason that make them our choice.
Resumo:
Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment. Results We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL (i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s capability for enriching, modifying and querying biomedical ontologies. Conclusions Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical ontologies, including automated reasoning, paving the way towards advanced biological data analyses.
Resumo:
Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.
Resumo:
The future Internet is expected to be composed of a mesh of interoperable web services accessible from all over the web. This approach has not yet caught on since global user?service interaction is still an open issue. This paper states one vision with regard to next-generation front-end Web 2.0 technology that will enable integrated access to services, contents and things in the future Internet. In this paper, we illustrate how front-ends that wrap traditional services and resources can be tailored to the needs of end users, converting end users into prosumers (creators and consumers of service-based applications). To do this, we propose an architecture that end users without programming skills can use to create front-ends, consult catalogues of resources tailored to their needs, easily integrate and coordinate front-ends and create composite applications to orchestrate services in their back-end. The paper includes a case study illustrating that current user-centred web development tools are at a very early stage of evolution. We provide statistical data on how the proposed architecture improves these tools. This paper is based on research conducted by the Service Front End (SFE) Open Alliance initiative.
Resumo:
One of the main challenges facing next generation Cloud platform services is the need to simultaneously achieve ease of programming, consistency, and high scalability. Big Data applications have so far focused on batch processing. The next step for Big Data is to move to the online world. This shift will raise the requirements for transactional guarantees. CumuloNimbo is a new EC-funded project led by Universidad Politécnica de Madrid (UPM) that addresses these issues via a highly scalable multi-tier transactional platform as a service (PaaS) that bridges the gap between OLTP and Big Data applications.
Resumo:
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.