914 resultados para Water treatment plants.
Resumo:
Novel flowerlike SnS2 and In3+-doped SnS2 hierarchical structures have been successfully synthesized by a simple hydrothermal route using biomolecular L-Cysteine-assisted methods. The L-cysteine plays an important role both as assistant and as sulfur source. Experiments with various parameters indicate that the pH values have a strong effect on the morphology of the assembly. Based on the experiments, a growth mechanical process was proposed. The synthetic samples were characterized by XRD, SEM, TEM (HRTEM), BET measurement, TGA, and XPS in detail.
Resumo:
We report a simple method for novel flower-like In4SnS8 nanostructure synthesis. A flower-like In4SnS8 nanostructure was synthesized via a one-pot hydrothermal route using the biomolecule L-cysteine as a sulfur source. The structure was characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption analysis and photoluminescence spectra. This flower-like structure consists of crosslinked nanoflakes and possesses good thermostability and a high BET surface area.
Resumo:
工业的高速发展使地球上有限的水资源受到日益严重的污染,去除水中的有毒、有害化学物质已成为环保领域的一项重要工作。纳米材料与技术的开发应用为实现高效、低成本的水处理开辟了新的途径。 本课题组开发的纳米-亚纳米功能新材料(生态宝)可用作养殖生态环境改良剂,它对“三氮”、硫化物、CODCr、BOD5、重金属等有害物质具有很好的去除能力。生态宝用于养殖幼参,有显著的促生长、增加成活率的作用。生态宝用于养殖对虾,对虾体内重金属含量有明显降低。 以粉末状P25型纳米TiO2为光催化剂,系统的研究了它对染料AB80的光催化降解。在紫外光照射下,光催化反应75min,染料AB80溶液完全脱色,光催化反应135min,染料溶液完全矿化;AB80的光催化脱色反应遵从准一级反应动力学;催化剂的最佳剂量为1.0g/L。AB80在TiO2颗粒表面的吸附符合Langmuir方程式,随着pH值的增加吸附量迅速减少;pH值在反应中起着重要的作用,碱性溶液中的反应速度比酸性溶液的大,pH=10.0初始反应速度最大;电子捕获剂(H2O2)的加入能够显著的提高反应速率,H2O2浓度为5mmol/L时,反应速度变为原来的2.78倍。 以硅藻土为载体,采用溶胶-凝胶法制备了负载型的纳米TiO2,SEM分析结果表明,TiO2的包覆量对负载光催化剂的形貌有很大影响,TiO2包覆量较低(14.5%)的复合物无团聚现象发生。XRD分析结果表明,所制备的TiO2为锐钛矿和金红石混晶型,平均粒径11nm。FT-IR分析结果表明,TiO2和硅藻土之间没有生成化学键。以染料AB80和B-2BF为模型污染物,利用制备的光催化剂复合物进行了吸附-光催化试验,结果表明,TiO2包覆量为14.5%的复合物具有较高的吸附-光催化活性,对模型污染物的降解效果好于德国Degussa公司的商品纳米P25-TiO2。溶液pH对TiO2/硅藻土复合物光催化活性影响很大,弱酸性条件有利于反应的进行。TiO2/硅藻土对实际印染废水有较好的降解效果,试验条件下,废水光催化反应3.5h,色度去除率为100%。研究了液固多相光催化反应的催化剂失活原因及再生手段,提出TiO2/硅藻土复合物再生的方法为酸洗和高温烧结。对于模拟印染废水来说,光催化剂重复使用对光催化活性几乎没有影响,重复使用15次后,催化活性仅降低了12%。而对实际印染废水来说,重复使用对光催化活性有影响,光催化剂复合物重复使用7次后,催化活性降低了41%。TiO2/硅藻土复合光催化剂成本低,简便易行,光催化效果好,有望在环境污染物治理中得到广泛的应用。 采用CuCl水解法制得了硅藻土负载的纳米Cu2O,并利用XRD、SEM等手段对其进行表征。研究了负载的纳米Cu2O对B-2BF和AB80染料废水的光催化降解,发现纳米Cu2O经过负载后,团聚减少,分散性好,对染料废水的光催化降解效率成倍增长。纳米Cu2O包覆量为31.3%的光催化剂复合物光催化活性最好,其光催化效率是纯的Cu2O的6倍。负载的纳米Cu2O可以有效的利用太阳光进行光催化反应,而且太阳光下纳米Cu2O的光催化活性比纳米TiO2的强。太阳能是取之不尽、用之不竭的清洁能源,利用太阳能来处理染料废水成本低、无污染,是一种非常有发展前景的环境治理新技术。pH 5-pH 7是负载纳米Cu2O光催化降解B-2BF的最佳反应范围。负载的纳米Cu2O光催化剂有较好的稳定性,重复使用8次以后,其脱色率仍能达到75%以上。
Resumo:
The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for effluents of textile finishing industry ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the COD. However, little is known about the reaction intermediates and products formed during ozonation. This work focuses on the oxidative degradation of purified (>90%), hydrolyzed Reactive Red 120 (Color Index), a widely used azo dye in the textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the dye in ultra pure water was performed in a laboratory scale cylindrical batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (53 5 nm), was almost complete after 150 min with an ozone concentration of 12.8 mg/l. The TOC/TOC0 ratio was about 74% and the COD was diminished to 46% of the initial value. The BOD5/COD ratio increased from 0.01 to 0.14. To obtain detailed information on the reaction processes during ozonation and the resulting oxidation products organic and inorganic anions were analyzed. Oxidation and cleavage of the azo group yielded nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused an increase in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.
Resumo:
Simultaneous nitrobenzene and phenol wet air oxidation was investigated in a stainless autoclave at temperature range of 180-220 ° C and 1.0 MPa oxygen partial pressure. Compared with the single oxidation of nitrobenzene under the same conditions, the presence of phenol in the reaction media greatly improved the removal efficiency of nitrobenzene. The effect of temperature on the reaction was studied. Phenol was considered as a type of initiator in the nitrobenzene oxidation. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Antisense deoxyoligonucleotide (ASO) gene silencing was investigated as a potential disinfection tool for industrial and drinking water treatment application. ASOs bind with their reverse complementary mRNA transcripts thereby blocking protein translation. While ASO silencing has mainly been studied in medicine, it may be useful for modulating gene expression and inactivating microorganisms in environmental applications. In this proof of concept work, gene targets were sh ble (zeocin resistance) and todE (catechol-2,3-dioxygenase) in Pichia pastoris and npt (kanamycin resistance) in Pseudomonas putida. A maximum 0.5-fold decrease in P. pastoris cell numbers was obtained following a 120 min incubation with single-stranded DNA (ssDNA) concentrations ranging from 0.2 to 200 nM as compared to the no ssDNA control. In P. putida, a maximum 5.2-fold decrease was obtained after 90 min with 400 nM ssDNA. While the silencing efficiencies varied for the 25 targets tested, these results suggest that protein activity as well as microbial growth can be altered using ASO gene silencing-based tools. If successful, this technology has the potential to eliminate some of the environmental and health issues associated with the use of strong chemical biocides. However, prior to its dissemination, more research is needed to increase silencing efficiency and develop effective delivery methods.
Resumo:
We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.
Resumo:
Although the bactericidal effect of copper has been known for centuries, there is a current resurgence of interest in the use of this element as an antimicrobial agent. During this study the use of dendritic copper microparticles embedded in an alginate matrix as a rapid method for the deactivation of Escherichia coli ATCC 11775 was investigated. The copper/alginate produced a decrease in the minimum inhibitory concentration from free copper powder dispersed in the media from 0.25 to 0.065 mg/ml. Beads loaded with 4% Cu deactivated 99.97% of bacteria after 90 minutes, compared to a 44.2% reduction in viability in the equivalent free copper powder treatment. There was no observed loss in the efficacy of this method with increasing bacterial loading up to 10(6) cells/ml, however only 88.2% of E. coli were deactivated after 90 minutes at a loading of 10(8) cells/ml. The efficacy of this method was highly dependent on the oxygen content of the media, with a 4.01% increase in viable bacteria observed under anoxic conditions compared to a >99% reduction in bacterial viability in oxygen tensions above 50% of saturation. Scanning electron micrographs (SEM) of the beads indicated that the dendritic copper particles sit as discrete clusters within a layered alginate matrix, and that the external surface of the beads has a scale-like appearance with dendritic copper particles extruding. E. coli cells visualised using SEM indicated a loss of cellular integrity upon Cu bead treatment with obvious visible blebbing. This study indicates the use of microscale dendritic particles of Cu embedded in an alginate matrix to effectively deactivate E. coli cells and opens the possibility of their application within effective water treatment processes, especially in high particulate waste streams where conventional methods, such as UV treatment or chlorination, are ineffective or inappropriate.
Resumo:
Proteins and humic acids are common constituents of waste water. Latex colloids (colloids) acted as surrogates for microorganisms in multiple pulse dynamic column experiments (MPEs) that permitted colloid mobility to be quantified before and after the injection of either BSA (a protein), or Suwannee River humic acid (SRHA).
At low OM coverage colloid breakthrough curves demonstrated both BSA and SRHA reduced colloid deposition rates, but did not affect colloid irreversible deposition mechanisms. By contrast, high levels of SRHA surface coverage not only further reduced the matrix’s ability to attenuate colloids, but also resulted in reversible adsorption of a significant fraction of colloids deposited. Modelling of colloid responses using random sequential adsorption modelling suggested that 1 microgram of SRHA had the same effect as the deposition of 5.90±0.14 x109 colloids; the model suggested that adsorption of the same mass of BSA was equivalent to the deposition of between 7.1x108 and 2.3x109 colloids.
Colloid responses in MPEs where BSA coverage of colloid deposition sites approached saturation demonstrated the sand matrix remained capable of adsorbing colloids. However, in contrast to responses observed in MPEs at low surface coverage, continued colloid injection showed that the sand’s attenuation capacity increased with time, i.e. colloid concentrations declined as more were deposited (filter ripening).
Importance: Study results highlight the contrasting responses that may arise due to the interactions between colloids and OM in porous media. Results not only underscore that colloids can interact differently with various forms of deposited OM, but also that a single type of OM may generate dramatically different responses depending on the degree of surface coverage. The MPE method provides a means of quantifying the influence of OM on microorganism mobility in porous media such as filter beds, which may be used for either drinking water treatment or waste water treatment. In the wider environment study findings have potential to allow more confident predictions of the mobility of sewage derived pathogens discharging to groundwater.