924 resultados para Warming device
Resumo:
Patients with spontaneous lens dislocation and glaucoma can be challenging to manage. We present a forty-six year old Caucasian lady who was referred with bilateral high intraocular pressure, and was subsequently diagnosed with glaucoma in association with lens dislocation and Marfan syndrome. Baerveldt glaucoma drainage device tubes were inserted in both eyes due to poor response to medical therapy. However, this was complicated by recurrent vitreous occlusion of both glaucoma drainage tubes requiring further multiple surgical interventions. There have not been any further recurrences of vitreous incarceration or posterior segment complications since, but the patient remains under close follow-up. © 2010 Ang et al; licensee BioMed Central Ltd.
Resumo:
The susceptibility of WiFi networks to Rogue Access Point attacks derives from the lack of identity for 802.11 devices. The most common means of detecting these attacks in current research is through tracking the credentials or the location of unauthorised and possibly malicious APs. In this paper, the authors outline a method of distinguishing WiFi Access Points using 802.11 MAC layer management frame traffic profiles. This system does not require location estimation or credential tracking techniques as used in current research techniques, which are known to be inaccurate. These characteristic management traffic profiles are shown to be unique for each device, tantamount to a MAC identity. The application of this technique to solving Rogue AP attacks under the constraints of an open access, public WiFi environment is discussed with the conclusion that the identity is practically very difficult to forge
Resumo:
Two short site-specific pieces performed with others at the Royal Ulster Agricultural Show for Kabosh Theatre Company, as part of their continuing effort to broaden theatre audiences. One, using the form of the Edwardian melodrama, tells of Marconi's efforts to create a device to communicate with the dead. The second tells the tale of the Christian Brother who invented the submarine, John Philip Holland.
Resumo:
The ability to measure acetabular cup orientation accurately during total hip arthroplasty represents a significant challenge. The aim of this research was to develop and evaluate a novel low cost mechanical device for measuring operative acetabular inclination. Cup implantation was simulated in two trials using the novel device: firstly involving surgeons and engineers orientating acetabular cups with sawbone pelves at a range of inclination angles (20°-55° in 5° increments); secondly in a simulated intra-operative scenario with surgeons. Target angles were compared with achieved angles and deviations from desired angles were recorded. In addition, all participants orientated cups under the same conditions using two other techniques: freehand and with a propriatory Mechanical Alignment Guide. In the first trial, the mean errors (deviations) using freehand technique, the mechanical alignment guide and the new device were 5.2° +/- 4.3° (range 0.1-22.0), 3.6° +/- 3.9° (range 0.1°-33.6°) and 0.5° +/- 0.4° (range 0.0-1.9) respectively. In the second trial, the mean error for freehand technique, mechanical alignment guide and the new device were 6.2° +/- 4.2° (range 0.2-18.2), 3.8° +/- 3.3° (range 0.0-19.1) and 0.6° +/- 0.5° (range 0.0-1.8) respectively. The new device has the potential to allow the surgeon to choose and record operative inclination accurately during total hip arthroplasty in the lateral decubitus position.
Resumo:
In Gamrie, an Aberdeenshire fishing village home to 700 people and six millennialist Protestant churches, global warming is more than just a 'hoax': it is a demonic conspiracy that threatens to bring about the ruin of the entire human race. Such a certainty was rendered intelligible to local Christians by viewing it through the lens of dispensationalist theology brought to the village by the Plymouth Brethren. In a play on Weberian notions of disenchantment, I argue that whereas Gamrie's Christians rejected global warming as a false eschatology, and environmentalism as a false salvationist religion, supporters of the climate change agenda viewed global warming as an apocalyptic reality and environmentalism as providing salvific redemption. Both rhetorics – each engaged in a search for 'signs of the end times' – are thus millenarian.
Resumo:
Earth pressure balanced (EPB) full face tunneling machines have experienced a remarkable increase in the number of applications throughout the world due to both mechanical developments and a more effective use of additives to condition the ground. Conditioning modifies the mechanical and hydraulic properties of a soil by making it suitable for the pressure control in the bulk chamber and extraction with the screw conveyor. The extraction system plays a fundamental role during the EPB operations particularly for a correct application of the face pressure. Despite the extensive use of the EPB technique, little knowledge exists concerning the understanding of the behavior of conditioned soil, particularly for noncohesive ground (sand and gravel). This paper presents and describes a prototype laboratory device, which simulates the extraction of the ground from a pressurized tank with a screw conveyor. The results of a preliminary test program carried out on a medium sized sand show that the prototype device is efficient in verifying the effects of foam for an optimal use in EPB conditioning. © 2007 ASCE.
Resumo:
We report a simple and facile methodology for constructing Pt (6.3 mm x 50 mu m) and Cu (6.3 mm x 30 mu m) annular microband electrodes for use in room temperature ionic liquids (RTILs) and propose their use for amperometric gas sensing. The suitability of microband electrodes for use in electrochemical analysis was examined in experiments on two systems. The first system studied to validate the electrochemical responses of the annular microband electrode was decamethylferrocene (DmFc), as a stable internal reference probe commonly used in ionic liquids, in [Pmim][NTf2], where the diffusion coefficients of DmFc and DmFc(+) and the standard electron rate constant for the DmFc/DmFc(+) couple were determined through fitting chronoamperometric and cyclic voltammetric responses with relevant simulations. These values are independently compared with those collected from a commercially available Pt microdisc electrode with excellent agreement. The second system focuses on O-2 reduction in [Pmim][NTf2], which is used as a model for gas sensing. The diffusion coefficients of O-2 and O-2(-) and the electron transfer rate constant were again obtained using chronoamperometry and cyclic voltammetry, along with simulations. Results determined from the microbands are again consistent to those evaluated from the Pt microdisc electrode when compared these results from home-made microband and commercially available microdisc electrodes. These observations indicate that the fabricated annular microband electrodes are suitable for quantitative measurements. Further the successful use of the Cu electrodes in the O-2 system suggests a cheap disposable sensor for gas detection. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We present a novel device-free stationary person detection and ranging method, that is applicable to ultra-wide bandwidth (UWB) networks. The method utilizes a fixed UWB infrastructure and does not require a training database of template waveforms. Instead, the method capitalizes on the fact that a human presence induces small low-frequency variations that stand out against the background signal, which is mainly affected by wideband noise. We analyze the detection probability, and validate our findings with numerical simulations and experiments with off-the-shelf UWB transceivers in an indoor environment. © 2007-2012 IEEE.
Resumo:
Passive person detection and localization is an emerging area in UWB localization systems, whereby people are not required to carry any UWB ranging device. Based on experimental data, we propose a novel method to detect static persons in the absence of template waveforms, and to compute distances to these persons. Our method makes very little assumptions on the environment and can achieve ranging performances on the order of 50 cm, using off-the-shelf UWB devices. © 2013 IEEE.
Resumo:
Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) and kill kinetics were established for vancomycin, rifampicin, trimethoprim, gentamicin, and ciprofloxacin against the biofilm forming bacteria Staphylococcus epidermidis (ATCC 35984), Staphylococcus aureus (ATCC 29213), Methicillin Resistant Staphylococcus aureus (MRSA) (ATCC 43300), Pseudomonas aeruginosa (PAO1), and Escherichia coli (NCTC 8196). MICs and MBCs were determined via broth microdilution in 96-well plates. MBECs were studied using the Calgary Biofilm Device. Values obtained were used to investigate the kill kinetics of conventional antimicrobials against a range of planktonic and biofilm microorganisms over a period of 24 hours. Planktonic kill kinetics were determined at 4xMIC and biofilm kill kinetics at relative MBECs. Susceptibility of microorganisms varied depending on antibiotic selected and phenotypic form of bacteria. Gram-positive planktonic isolates were extremely susceptible to vancomycin (highest MBC: 7.81 mg L−1: methicillin sensitive and resistant S. aureus) but no MBEC value was obtained against all biofilm pathogens tested (up to 1000 mg L−1). Both gentamicin and ciprofloxacin displayed the broadest spectrum of activity with MIC and MBCs in the mg L−1 range against all planktonic isolates tested and MBEC values obtained against all but S. epidermidis (ATCC 35984) and MRSA (ATCC 43300).
Resumo:
We have developed an instrument to study the behavior of the critical current density (J(c)) in superconducting wires and tapes as a function of field (mu(0)H), temperature (T), and axial applied strain (epsilon(a)). The apparatus is an improvement of similar devices that have been successfully used in our institute for over a decade. It encompasses specific advantages such as a simple sample layout, a well defined and homogeneous strain application, the possibility of investigating large compressive strains and the option of simple temperature variation, while improving the main drawback in our previous systems by increasing the investigated sample length by approximately a factor of 10. The increase in length is achieved via a design change from a straight beam section to an initially curved beam, placed perpendicular to the applied field axis in the limited diameter of a high field magnet bore. This article describes in detail the mechanical design of the device and its calibrations. Additionally initial J(c)(epsilon(a)) data, measured at liquid helium temperature, are presented for a bronze processed and for a powder-in-tube Nb3Sn superconducting wire. Comparisons are made with earlier characterizations, indicating consistent behavior of the instrument. The improved voltage resolution, resulting from the increased sample length, enables J(c) determinations at an electric field criterion E-c=10 muV/m, which is substantially lower than a criterion of E-c=100 muV/m which was possible in our previous systems. (C) 2004 American Institute of Physics.