862 resultados para Vitamin B 12
Resumo:
The effect of the microfilament inhibitor cytochalasin B (10 and 100-mu-g/ml) on the ultrastructure of adult Fasciola hepatica was determined in vitro by scanning and transmission electron microscopy (SEM, TEM) using both intact flukes and tissue-slice material. SEM revealed that initial swelling of the tegument led to surface blebbing and limited areas of sloughing after 24 h treatment at 100-mu-g/ml. In the tegumental syncytium, basal accumulations of secretory bodies (especially T2s) were evident in the earlier time periods but declined with longer incubations, until few secretory bodies remained in the syncytium overall. Blebbing of the apical plasma membrane and occasional areas of breakdown and sloughing of the tegument were observed over longer periods of treatment at 100-mu-g/ml. In the tegumental cell bodies, the Golgi complexes gradually decreased in size and activity, and few secretory bodies were produced. In the later time periods, the cells assumed abnormal shapes, the cytoplasm shrinking in towards the nucleus. In the vitelline follicles, a random dispersion of shell protein globules was evident within the intermediate-type cells, rather than their being organized into distinct shell globule clusters. Disruption of this process was more severe at the higher concentration of 100-mu-g/ml and again was more evident in tissue-slice material. In the latter, after prolonged (12 h) exposure to cytochalasin B, the intermediate and mature vitelline cells were filled with loosely packed and expanded shell globule clusters, containing few shell protein globules. The mature vitelline cells continued to lay down "yolk" globules and glycogen deposits. Disruption of the network of processes from the nurse cells was evident at the higher concentration of cytochalasin. Spaces began to appear between the vitelline cells and grew larger with progressively longer incubation periods, and the cells themselves assumed abnormal shapes. A number of binucleate stem cells were observed in tissue-slice material at the longest incubation period (12 h).
Resumo:
We present the detailed spectral analysis of a sample of M33 B-type supergiant stars, aimed at the determination of their fundamental parameters and chemical composition. The analysis is based on a grid of non-LTE metal line-blanketed model atmospheres including the effects of stellar winds and spherical extension computed with the code FASTWIND. Surface abundance ratios of C, N, and O are used to discuss the chemical evolutionary status of each individual star. The comparison of observed stellar properties with theoretical predictions of massive star evolutionary models shows good agreement within the uncertainties of the analysis. The spatial distribution of the sample allows us to investigate the existence of radial abundance gradients in the disk of M33. The comparison of stellar and H II region O abundances ( based on direct determinations of the electron temperature of the nebulae) shows good agreement. Using a simple linear radial representation, the stellar oxygen abundances result in a gradient of -0.0145 +/- 0.005 dex arcmin(-1) (or -0.06 +/- 0.02 dex kpc(-1)) up to a distance equal to similar to 1.1 times the isophotal radius of the galaxy. A more complex representation cannot be completely discarded by our stellar sample. The stellar Mg and Si abundances follow the trend displayed by O abundances, although with shallower gradients. These differences in gradient slope cannot be explained at this point. The derived abundances of the three alpha-elements yield solar metallicity in the central regions of the disk of M33. A comparison with recent planetary nebula data from Magrini and coworkers indicates that the disk of M33 has not suffered from a significant O enrichment in the last 3 Gyr.
Resumo:
The current saturated operation of X-ray lasers at wavelengths > 15 nm requires at least kilojoule drive energy, which is only available at the largest laser installations in the world, Using a specially designed drive pulse configuration, saturated operation of a Ni-like Sn X-ray laser at 12 nm has been achieved with only 75 J drive energy, An efficiency as high as 9 x 10(6) in converting laser energy from the 1 eV optical spectral range to the 100 eV soft X-ray range has been reached, This paves the way for applications of saturated X-ray lasers at 12 nm at many other smaller laboratories. (C) 1997 Published by Elsevier Science B.V.
Resumo:
Background: Burkholderia cenocepacia is a Gram-negative opportunistic pathogen displaying high resistance to antimicrobial peptides and polymyxins. We identified mechanisms of resistance by analyzing transcriptional changes to polymyxin B treatment in three isogenic B. cenocepacia strains with diverse polymyxin B resistance phenotypes: the polymyxin B-resistant parental strain K56-2, a polymyxin B-sensitive K56-2 mutant strain with heptoseless lipopolysaccharide (LPS) (RSF34), and a derivative of RSF34 (RSF34 4000B) isolated through multiple rounds of selection in polymyxin B that despite having a heptoseless LPS is highly polymyxin B-resistant.
Resumo:
The type VI secretion system (T6SS) contributes to the virulence of Burkholderia cenocepacia, an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. BcsK(C) is a highly conserved protein among the T6SSs in Gram-negative bacteria. Here, we show that BcsK(C) is required for Hcp secretion and cytoskeletal redistribution in macrophages upon bacterial infection. These two phenotypes are associated with a functional T6SS in B. cenocepacia. Experiments employing a bacterial two-hybrid system and pulldown assays demonstrated that BcsK(C) interacts with BcsL(B), another conserved T6SS component. Internal deletions within BcsK(C) revealed that its N-terminal domain is necessary and sufficient for interaction with BcsL(B). Fractionation experiments showed that BcsK(C) can be in the cytosol or tightly associated with the outer membrane and that BcsK(C) and BcsL(B) form a high molecular weight complex anchored to the outer membrane that requires BcsF(H) (a ClpV homolog) to be assembled. Together, our data show that BcsK(C)/BcsL(B) interaction is essential for the T6SS activity in B. cenocepacia.
Resumo:
Evidence is accumulating that vitamin D may be protective against carcinogenesis, although exceptions have been observed for some digestive tract neoplasms. The aim of the present study was to explore the association between dietary vitamin D and related nutrients and the risk of oesophageal adenocarcinoma and its precursor conditions, Barrett's oesophagus and reflux oesophagitis. In an all-Ireland case-control study conducted between March 2002 and July 2005, 218 oesophageal adenocarcinoma patients, 212 Barrett's oesophagus patients, 208 reflux oesophagitis patients and 252 population-based controls completed a 101-item FFQ, and provided lifestyle and demographic information. Multiple logistic regression analysis was applied to examine the association between dietary intake and disease risk. Oesophageal adenocarcinoma risk was significantly greater for individuals with the highest compared with the lowest tertile of vitamin D intake (OR 1·99, 95 % CI 1·03, 3·86; P for trend = 0·02). The direct association could not be attributed to a particular vitamin D food source. Vitamin D intake was unrelated to Barrett's oesophagus and reflux oesophagitis risk. No significant associations were observed for Ca or dairy intake and oesophageal adenocarcinoma, Barrett's oesophagus or reflux oesophagitis development. High vitamin D intake may increase oesophageal adenocarcinoma risk but is not related to reflux oesophagitis and Barrett's oesophagus. Ca and dairy product intake did not influence the development of these oesophageal lesions. These findings suggest that there may be population subgroups at an increased risk of oesophageal adenocarcinoma if advice to improve vitamin D intake from foods is implemented. Limited work has been conducted in this area, and further research is required.
Resumo:
Background: The effects of subclinical vitamin D deficiency on bone mineral density (BMD) and bone turnover in adolescents, especially in boys, are unclear.
Objective: We aimed to investigate the relations of different stages of vitamin D status and BMD and bone turnover in a representative sample of adolescent boys and girls.
Design: BMD was measured by dual-energy X-ray absorptiometry at the nondominant forearm and dominant heel in a random sample of 12- (n = 260) and 15-y-old (n = 239) boys and 12- (n = 266) and 15-y-old (n = 250) girls. Serum 25-hydroxyvitamin D, parathyroid hormone, osteocalcin, and type I collagen cross-linked C-telopeptide were assessed by using enzyme-linked immunoassays. Relations between vitamin D status and bone health indexes were assessed by using regression modeling.
Results: Using multivariate regression to adjust for potential physical, lifestyle, and dietary confounding factors, we observed that 12-and 15-y-old girls with high vitamin D status (>= 74.1 nmol/L) had significantly greater forearm (but not heel) BMD (beta = 0.018; SE = 0.008; P < 0.05 for each age group) and lower serum parathyroid hormone concentrations and bone turnover markers than did those with low vitamin D status. These associations were evident in subjects sampled throughout the year and in winter only. There was no significant relation between vitamin D status and BMD in boys.
Conclusions: Maintaining serum 25-hydroxyvitamin D concentrations above approximate to 50 nmol/L throughout the year may be a cost-effective means of improving bone health. Increased emphasis on exploring strategies for improving vitamin D status in adolescents is needed.
Resumo:
Research Question: A20 is an LPS-inducible, cytoplasmic zinc finger protein, that inhibits TLR-activated NF-?B signalling by deubiquitinating TRAF6. A20 action is facilitated by complex formation with RNF11, Itch and TAX1BP1. This study investigates if the expression of A20 is altered in the chronically inflamed Cystic Fibrosis (CF) airway epithelium.<br/><br/>Methods: Nasal epithelial cells from CF patients (F508del homozygous), non-CF controls and immortalised epithelial cells (16HBE14o- and CFBE41o-) were stimulated with LPS. Cytoplasmic expression of A20 and expression of NF-?B subunits was analysed. Formation of the A20 ubiquitin editing complex was also investigated.<br/><br/>Results: In CFBE41o-, peak LPS-induced A20 expression was delayed compared with 16HBE14o- and fell significantly below basal levels 12-24 h after LPS stimulation. This was confirmed in primary CF airway cells. Additionally, a significant inverse relationship between A20 and p65 expression was observed. Inhibitor studies showed that A20 does not undergo proteasomal degradation in CFBE41o-. A20 interacted with TAX1BP1, RNF11 and TRAF6 in 16HBE14o- cells, but these interactions were not observed in CFBE41o-.<br/><br/>Conclusion: he expression of A20 is significantly altered in CF and important interactions with complex members and target proteins are lost, which may contribute to the state of chronic NF-?B-driven inflammation.
Resumo:
Mild hyperhomocysteinemia is accepted as a risk factor for premature cardiovascular disease. In a population with a high prevalence of cardiovascular disease, we screened a group of clinically healthy working men aged 30-49 y (n = 509) for plasma homocysteine and 5,10-methylene tetrahydrofolate reductase (MTHFR) genotype status. Those with mildly elevated homocysteine concentrations (> or = 8.34 micromol/L) were selected for intervention. In a randomized, factorial-design, controlled trial we assessed the effects of B-group vitamins and antioxidant vitamin supplementation on homocysteine concentrations. The 132 men were randomly assigned to one of four groups: supplementation with B-group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, and 0.02 mg cyanocobalamin), antioxidant vitamins alone (150 mg ascorbic acid, 67 mg RRR-alpha-tocopherol, and 9 mg beta-carotene), B-group vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-wk intervention. When homocysteine concentrations were analyzed by group, significant (P <0.001) decreases (32.0% and 30.0%, respectively) were observed in both groups receiving B-group vitamins either with or without antioxidants. The effect of B-group vitamins alone over 8 wk was a reduction in homocysteine concentrations of 27.9% (95% CI: 22.0%, 33.3%; P <0.001) whereas antioxidants alone produced a nonsignificant increase of 5.1% (95% CI: -2.8%, 13.6%; P = 0.21). There was no evidence of any interaction between the two groups of vitamins. The effect of B-group vitamin supplementation seemed to depend on MTHFR genotype. Supplementation with the B-group vitamins with or without antioxidants reduced homocysteine in the men with mildly elevated concentrations, and hence may be effective in reducing cardiovascular risk.
Resumo:
In addition to the HLA locus, six genetic risk factors for primary biliary cirrhosis (PBC) have been identified in recent genome-wide association studies (GWAS). To identify additional loci, we carried out a GWAS using 1,840 cases from the UK PBC Consortium and 5,163 UK population controls as part of the Wellcome Trust Case Control Consortium 3 (WTCCC3). We followed up 28 loci in an additional UK cohort of 620 PBC cases and 2,514 population controls. We identified 12 new susceptibility loci (at a genome-wide significance level of P <5 × 10?8) and replicated all previously associated loci. We identified three further new loci in a meta-analysis of data from our study and previously published GWAS results. New candidate genes include STAT4, DENND1B, CD80, IL7R, CXCR5, TNFRSF1A, CLEC16A and NFKB1. This study has considerably expanded our knowledge of the genetic architecture of PBC.
Resumo:
In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer (Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for <br/>the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further <br/>emphasizes the superior phytonutrient composition of the aleurone layer. <br/>INTRODUCTION <br/>Wheat is a valuable source of betaine, choline (1, 2), B <br/>vitamins, vitamin E, and a number of minerals, including iron, <br/>zinc, magnesium, and phosphorus (3). Epidemiological studies <br/>indicate that whole-grain consumption is protective against <br/>several chronic diseases (4-12). It has not been fully elucidated <br/>how whole-grain cereals or specific fractions (13) exert their <br/>protective effect, but it is thought to be due to their content of <br/>several nutrients associated with the reduced risk of disease. <br/>Conventionally, whole grain is separated during milling into <br/>bran, germ, and flour (14). The nutrient composition of these <br/>fractions differ markedly; refined wheat flour contains approximately <br/>50% less vitamins and minerals than whole-grain <br/>flour (
Resumo:
Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.<br/><br/>Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).<br/><br/>Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.