911 resultados para Visual data exploration
Resumo:
Short note and link on data visualisation for students at all levels
Resumo:
Objetivo: Establecer la correlación entre condiciones de iluminación, ángulo visual, discriminación de contrastes y agudeza visual en la aparición de síntomas visuales en operarios de computador. Materiales y métodos: Estudio de corte transversal y correlación en muestra de 136 trabajadores administrativos de un “call center” perteneciente a una entidad de salud en la ciudad de Bogotá, utilizando un cuestionario con el que se evaluaron las variables sociodemográficas y ocupacionales; aplicando la escala de síntomas visión – computador (CVSS17), realizando evaluación médica y midiendo iluminación y distancia operario pantalla de computador y con los datos recolectados se realizó un análisis estadístico bivariado y se estableció la correlación entre las condiciones de iluminación, ángulo visual, discriminación de contrataste y agudeza visual; frente a la aparición de síntomas visuales asociados con el uso del computador. El análisis se llevó a cabo con medidas de tendencia central y dispersión y con el coeficiente de correlación paramétrico de Pearson o no-paramétrico de Spearman, previamente se evaluó la normalidad con la prueba de Shapiro-Wilk. Las pruebas estadísticas se evaluarán a un nivel de significancia del 5% (p<0.05). Resultados: El promedio de edad de los participantes en el estudio fue de 36,3 años con un rango entre los 22 y 57 años y en donde el género predominante fue el femenino con el 79,4%. Se encontraron síntomas visuales asociados al uso de pantalla de computador del 59,6%, siendo los más frecuentes la epifora (70,6%), fotofobia (67,6%) y ardor ocular (54,4%). Se reportó una correlación inversa significativa entre niveles de iluminación y manifestación de fotofobia (p=0.02; r= 0,262). Por otra parte no se encontró correlación significativa entre los síntomas referidos con ángulo de visión y agudeza visual y discriminación de contrastes. Conclusión: Las condiciones laborales de iluminación del grupo de estudio están relacionadas con la manifestación de fotofobia, Se encontró asociación entre síntomas visuales y variables sociodemográficas, específicamente con el género, fotofobia a pantalla, fatiga visual y fotofobia
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
Regular visual observations of persistent contrails over Reading, UK, have been used to evaluate radiosonde measurements of temperature and humidity defining cold ice-supersaturated atmospheric regions which are assumed to be a necessary condition for persistent condensation trails (contrails) to form. Results show a good correlation between observations and predictions using data from Larkhill, 63 km from Reading. A statistical analysis of this result and the forecasts using data from four additional UK radiosonde stations are presented. The horizontal extent of supersaturated layers could be inferred from this to be several hundred kilometres. The necessity of bias corrections to radiosonde humidity measurements is discussed and an analysis of measured ice-supersaturated atmospheric layers in the troposphere is presented. It is found that ice supersaturation is more likely to occur in winter than in summer, with frequencies of 17.3% and 9.4%, respectively, which is mostly due to the layers being thicker in winter than in summer. The most probable height for them to occur is about 10 km.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.
Resumo:
The visual perception of size in different regions of external space was studied in Parkinson's disease (PD). A group of patients with worse left-sided symptoms (LPD) was compared with a group with worse right-sided symptoms (RPD) and with a group of age-matched controls on judgements of the relative height or width of two rectangles presented in different regions of external space. The relevant dimension of one rectangle (the 'standard') was held constant, while that of the other (the 'variable') was varied in a method of constant stimuli. The point of subjective equality (PSE) of rectangle width or height was obtained by probit analysis as the mean of the resulting psychometric function. When the standard was in left space, the PSE of the LPD group occurred when the variable was smaller, and when the standard was in right space, when the variable was larger. Similarly, when the standard rectangle was presented in upper space, and the variable in lower space, the PSE occurred when the variable was smaller, an effect which was similar in both left and right spaces. In all these experiments, the PSEs for both the controls and the RPD group did not differ significantly, and were close to a physical match, and the slopes of the psychometric functions were steeper in the controls than the patients, though not significantly so. The data suggest that objects appear smaller in the left and upper visual spaces in LPD, probably because of right hemisphere impairment. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.
Resumo:
A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.
Resumo:
A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study has explored the underlying causes of preventable drug-related admissions to hospital, from primary care through semi-structured interviews and review of patients’ medical records. Analysis of the data has revealed that communication failures between different groups of healthcare professionals and between healthcare professionals and patients contribute to preventable drug-related admissions, as do knowledge gaps about medication in both healthcare professionals and patients. In addition, working conditions for community pharmacists severely limit their ability to effectively act as a safety barrier to patients receiving inappropriate medication. Limitations include heavy workloads, lack of access to patients’ clinical information, poor relationships with general practitioners and time restrictions. The results of this study represent an important addition to our understanding of the contribution of human error as an underlying cause of preventable drug-related morbidity, and the factors which contribute to errors occurring in the primary healthcare setting.