969 resultados para Visual Nervous system
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. ^ In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. ^ In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.^
Resumo:
Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora – Euperipatoides rowelli – an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both.
Resumo:
RESUMEN Objetivo: Estimar la prevalencia de las diferentes enfermedades oftalmológicas que aparecen en el contexto de una enfermedad autoinmune (EAI) en pacientes de un centro de referencia reumatológica en Colombia, según características clínicas y sociodemográficas durante un período de 15 años, comprendido entre los años 2000 a 2015. Métodos: Se realizó un estudio descriptivo, observacional de prevalencia. El tipo de muestreo fue aleatorio estratificado con asignación proporcional en el programa Epidat 3.4. Los datos se analizaron en el programa SPSS v22.0 y se realizó análisis univariado de las variables categóricas, para las variables cuantitativas se realizaron medidas de tendencia central. Resultados: De 1640 historias clínicas revisadas, se encontraron 634 pacientes (38,65%) con compromiso ocular. Si excluimos los pacientes con SS, que por definición presentan ojo seco, 222 pacientes (13,53%) presentaron compromiso oftalmológico. Del total de pacientes, el 83,3% fueron mujeres. La AR fue la enfermedad autoinmune con mayor compromiso oftalmológico con 138 pacientes (62,2%), y en último lugar la sarcoidosis con 1 solo paciente afectado. La QCS fue la manifestación más común en todos los grupos diagnósticos de EAI, con 146 pacientes (63,5%). De 414 pacientes con Síndrome de Sjögren (SS) y QCS 8 presentaron compromiso ocular adicional, siendo la uveítis la segunda patología ocular asociada en pacientes con SS y la primera causa en las espondiloartropatias (71,4 %). Los pacientes con catarata (4,1%) presentaron la mayor prevalencia de uso de corticoide (88.8%). De 222 pacientes, 28 (12,6%) presentaron uveítis. Del total de pacientes, 16 (7,2%) presentaron maculopatía por antimalaráricos y 6 (18,75%) de los pacientes con LES. Los ANAS se presentaron en el 100% los pacientes con trastorno vascular de la retina. Los pacientes con epiescleritis presentaron la mayor proporción de positivización de anticuerpos anti-DNA. La EAI que más presentó epiescleritis fue LES con 4 pacientes (12,5%) El 22% de paciente con anticuerpos anti-RNP presentaron escleritis y 32,1% de los pacientes con uveítis presentaron HLA-B27 positivo. Las manifestaciones oftalmológicas precedieron a las sistémicas entre un 11,1% y un 33,3% de los pacientes. Conclusión: Las enfermedades oculares se presentan con frecuencia en los pacientes colombianos con EAI (38.65%), siendo la AR la enfermedad con mayor compromiso ocular (62,2%) y la QCS la enfermedad ocular con mayor prevalencia en todas las EAI (63,5%). La uveítis se presentó en 28 pacientes (12,6%). Las manifestaciones oftalmológicas pueden preceder a las sistémicas. El examen oftalmológico debe ser incluido en los pacientes con EAI, por ser la enfermedad ocular una comorbilidad frecuente. Adicionalmente, los efectos oftalmológicos de las medicaciones sistémicas utilizadas en EAI deben ser estrechamente monitorizados, durante el curso del tratamiento.
Resumo:
Previous research has shown that crotamine, a toxin isolated from the venom of Crotalus durissus terrificus, induces the release of acetylcholine and dopamine in the central nervous system of rats. Particularly, these neurotransmitters are important modulators of memory processes. Therefore, in this study we investigated the effects of crotamine infusion on persistence of memory in rats. We verified that the intrahippocampal infusion of crotamine (1 μg/μl; 1 μl/side) improved the persistence of object recognition and aversive memory. By other side, the intrahippocampal infusion of the toxin did not alter locomotor and exploratory activities, anxiety or pain threshold. These results demonstrate a future prospect of using crotamine as potential pharmacological tool to treat diseases involving memory impairment, although it is still necessary more researches to better elucidate the crotamine effects on hippocampus and memory.
Resumo:
Seizures in some 30% to 40% of patients with epilepsy fail to respond to antiepileptic drugs or other treatments. While much has been made of the risks of new drug therapies, not enough attention has been given to the risks of uncontrolled and progressive epilepsy. This critical review summarizes known risks associated with refractory epilepsy, provides practical clinical recommendations, and indicates areas for future research. Eight international epilepsy experts from Europe, the United States, and South America met on May 4, 2013, to present, review, and discuss relevant concepts, data, and literature on the consequences of refractory epilepsy. While patients with refractory epilepsy represent the minority of the population with epilepsy, they require the overwhelming majority of time, effort, and focus from treating physicians. They also represent the greatest economic and psychosocial burdens. Diagnostic procedures and medical/surgical treatments are not without risks. Overlooked, however, is that these risks are usually smaller than the risks of long-term, uncontrolled seizures. Refractory epilepsy may be progressive, carrying risks of structural damage to the brain and nervous system, comorbidities (osteoporosis, fractures), and increased mortality (from suicide, accidents, sudden unexpected death in epilepsy, pneumonia, vascular disease), as well as psychological (depression, anxiety), educational, social (stigma, driving), and vocational consequences. Adding to this burden is neuropsychiatric impairment caused by underlying epileptogenic processes (essential comorbidities), which appears to be independent of the effects of ongoing seizures themselves. Tolerating persistent seizures or chronic medicinal adverse effects has risks and consequences that often outweigh risks of seemingly more aggressive treatments. Future research should focus not only on controlling seizures but also on preventing these consequences.
Resumo:
Traira (Hoplias malabaricus) is a neotropical fish that is widely distributed in freshwater environments in South America. In the present study, we documented the occurrence of metacercariae of Austrodiplostomum spp. (Diplostomidae) in the eyes and cranial cavity of H. malabaricus and described parasite-induced behavioral changes in the host. The fish were collected from the upper São Francisco River, in the Serra da Canastra mountain range, Minas Gerais, transported alive to the laboratory, observed for 2 weeks, and subsequently examined for parasites. Of the 35 fish examined, 28 (80 %) had free metacercariae in the vitreous humor (mean intensity=95.4; mean abundance=76.3), and 24 (68.57 %) had free metacercariae in the cranial cavity, mainly concentrated below the floor of the brain, at the height of the ophthalmic lobe (mean intensity=12.91; mean abundance=8.85). Specimens of H. malabaricus with a high intensity of infection in the brain displayed changes in swimming behavior.
Resumo:
Bariatric surgery is considered an effective method for sustained weight loss, but may cause various nutritional complications. The aim of this study was to evaluate the nutritional status of minerals and vitamins, food consumption, and to monitor physiologic parameters in patients with obesity before and 6 months after Roux-en-Y gastric bypass surgery (RYGB). Thirty-six patients who had undergone RYGB were prospectively evaluated before and 6 months after surgery. At each phase their weight, height, body mass index (BMI), Electro Sensor Complex (ES Complex) data, food consumption, and total protein serum levels, albumin, prealbumin, parathyroid hormone (PTH), zinc (Zn), B12 vitamin (VitB12), iron (Fe), ferritin, copper (Cu), ionic calcium (CaI), magnesium (Mg), and folic acid were assessed. The mean weight loss from baseline to 6 months after surgery was 35.34±4.82%. Markers of autonomic nervous system balance (P<.01), stiffness index (P<.01), standard deviation of normal-to-normal R-R intervals (SDNN) (P<.01), and insulin resistance (P<.001) were also improved. With regard to the micronutrients measured, 34 patients demonstrated some kind of deficiency. There was a high percentage of Zn deficiency in both pre- (55.55%) and postoperative (61.11%) patients, and 33.33% of the patients were deficient in prealbumin postoperatively. The protein intake after 6 months of surgery was below the recommended intake (<70 g/d) for 88.88% of the patients. Laboratory analyses demonstrated an average decrease in total protein (P<.05), prealbumin (P = .002), and PTH (P = .008) between pre- and postsurgery, and a decrease in the percentage of deficiencies for Mg (P<.05), CaI (P<.05), and Fe (P = .021). Despite improvements in the autonomic nervous system balance, stiffness index markers and insulin resistance, we found a high prevalence of hypozincemia at 6 months post-RYGB. Furthermore, protein supplements were needed to maintain an adequate protein intake up to 6 months postsurgery.
Resumo:
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and g ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion.
Resumo:
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.
Resumo:
Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.Fundamento: Distúrbios da motilidade do intestino proximal no infarto agudo do miocárdio podem desencadear sintomas digestivos como náuseas e vômitos. O infarto do miocárdio ocasiona retardo do esvaziamento gástrico (EG) de líquido em ratos. Objetivo: Investigar se existe a influência do nervo vago (VGX), adrenoreceptores α-1, receptores GABAB do sistema nervoso central e participação do núcleo paraventricular (NPV) do hipotálamo no esvaziamento gástrico (EG) e complacência gástrica (CG) em ratos infartados. Métodos: Ratos Wistar (n = 8-15) foram divididos em: grupo infarto (INF), sham (SH) e subdivididos. O infarto foi realizado por ligadura da artéria coronária descendente anterior. A complacência gástrica foi estimada com curvas pressão-volume. Realizada vagotomia por secção dos ramos dorsal e ventral. Para verificar a ação dos receptores GABAB foi injetado baclofeno por via intra ventrículo-cerebral. Simpatectomia química foi realizada com prazosina intravenosa (iv), e na lesão do núcleo paraventricular do hipotálamo foi utilizada corrente elétrica de 1mA/10s, com esvaziamento gástrico determinado por medição da retenção gástrica (% RG) de uma refeição salina. Resultados: Não houve diferença significativa na CG. A vagotomia (VGX) reduziu significativamente a %RG; no grupo INF, o tratamento intra ventrículo-cerebral (ivc) com baclofeno reduziu significativamente a % RG; não houve conclusivamente envolvimento dos receptores GABAB em retardar o EG; o tratamento intravenoso com prazosina reduziu significativamente a %RG no grupo INF. A lesão do NPV aboliu o efeito do infarto do miocárdio no EG. Conclusão: O nervo vago, receptores α-adrenérgicos e núcleo paraventricular estão envolvidos no retardo do esvaziamento gástrico no infarto agudo do miocárdio em ratos.
Resumo:
The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (ependymoma, pilocytic astrocytoma, central neurocytoma, ganglioglioma, choroid plexus papilloma, primitive neuroectodermal tumors, meningioma, epidermoid tumor). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some image patterns that may facilitate the differential diagnosis.
Resumo:
The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (colloid cyst, oligodendroglioma, astroblastoma, lipoma, cavernoma) and of inflammatory/infectious lesions (neurocysticercosis and an atypical presentation of neurohistoplasmosis). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some imaging patterns that may facilitate the differential diagnosis.
Resumo:
Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.
Resumo:
The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.