943 resultados para Ventral hippocampus
Resumo:
Humans are creatures of routine and habit. When faced with situations in which a default option is available, people show a consistent tendency to stick with the default. Why this occurs is unclear. To elucidate its neural basis, we used a novel gambling task in conjunction with functional magnetic resonance imaging. Behavioral results revealed that participants were more likely to choose the default card and felt enhanced emotional responses to outcomes after making the decision to switch. We show that increased tendency to switch away from the default during the decision phase was associated with decreased activity in the anterior insula; activation in this same area in reaction to "switching away from the default and losing" was positively related with experienced frustration. In contrast, decisions to choose the default engaged the ventral striatum, the same reward area as seen in winning. Our findings highlight aversive processes in the insula as underlying the default bias and suggest that choosing the default may be rewarding in itself.
Resumo:
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.
Resumo:
In fear extinction, an animal learns that a conditioned stimulus (CS) no longer predicts a noxious stimulus [unconditioned stimulus (UCS)] to which it had previously been associated, leading to inhibition of the conditioned response (CR). Extinction creates a new CS-noUCS memory trace, competing with the initial fear (CS-UCS) memory. Recall of extinction memory and, hence, CR inhibition at later CS encounters is facilitated by contextual stimuli present during extinction training. In line with theoretical predictions derived from animal studies, we show that, after extinction, a CS-evoked engagement of human ventromedial prefrontal cortex (VMPFC) and hippocampus is context dependent, being expressed in an extinction, but not a conditioning, context. Likewise, a positive correlation between VMPFC and hippocampal activity is extinction context dependent. Thus, a VMPFC-hippocampal network provides for context-dependent recall of human extinction memory, consistent with a view that hippocampus confers context dependence on VMPFC.
Resumo:
In contrast to the wealth of data describing the neural mechanisms underlying classical conditioning, we know remarkably little about the mechanisms involved in acquisition of explicit contingency awareness. Subjects variably acquire contingency awareness in classical conditioning paradigms, in which they are able to describe the temporal relationship between a conditioned cue and its outcome. Previous studies have implicated the hippocampus and prefrontal cortex in the acquisition of explicit knowledge, although their specific roles remain unclear. We used functional magnetic resonance imaging to track the trial-by-trial acquisition of explicit knowledge in a concurrent trace and delay conditioning paradigm. We show that activity in bilateral middle frontal gyrus and parahippocampal gyrus correlates with the accuracy of explicit contingency awareness on each trial. In contrast, amygdala activation correlates with conditioned responses indexed by skin conductance responses (SCRs). These results demonstrate that brain regions known to be involved in other aspects of learning and memory also play a specific role, reflecting on each trial the acquisition and representation of contingency awareness.
Resumo:
The ability to use environmental stimuli to predict impending harm is critical for survival. Such predictions should be available as early as they are reliable. In pavlovian conditioning, chains of successively earlier predictors are studied in terms of higher-order relationships, and have inspired computational theories such as temporal difference learning. However, there is at present no adequate neurobiological account of how this learning occurs. Here, in a functional magnetic resonance imaging (fMRI) study of higher-order aversive conditioning, we describe a key computational strategy that humans use to learn predictions about pain. We show that neural activity in the ventral striatum and the anterior insula displays a marked correspondence to the signals for sequential learning predicted by temporal difference models. This result reveals a flexible aversive learning process ideally suited to the changing and uncertain nature of real-world environments. Taken with existing data on reward learning, our results suggest a critical role for the ventral striatum in integrating complex appetitive and aversive predictions to coordinate behaviour.
Resumo:
Midbrain dopaminergic neurons in the substantia nigra, pars compacta and ventral tegmental area are critically important in many physiological functions. These neurons exhibit firing patterns that include tonic slow pacemaking, irregular firing and bursting, and the amount of dopamine that is present in the synaptic cleft is much increased during bursting. The mechanisms responsible for the switch between these spiking patterns remain unclear. Using both in-vivo recordings combined with microiontophoretic or intraperitoneal drug applications and in-vitro experiments, we have found that M-type channels, which are present in midbrain dopaminergic cells, modulate the firing during bursting without affecting the background low-frequency pacemaker firing. Thus, a selective blocker of these channels, 10,10-bis(4-pyridinylmethyl)-9(10H)- anthracenone dihydrochloride, specifically potentiated burst firing. Computer modeling of the dopamine neuron confirmed the possibility of a differential influence of M-type channels on excitability during various firing patterns. Therefore, these channels may provide a novel target for the treatment of dopamine-related diseases, including Parkinson's disease and drug addiction. Moreover, our results demonstrate that the influence of M-type channels on the excitability of these slow pacemaker neurons is conditional upon their firing pattern. © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Resumo:
We describe one new enchytraeid species, Fridericia liangi sp. nov., from Mt. Changbaishan, Jilin Province, northeastern China. It was collected from soils at the foot of Changbaishan Mountain and is distinguished from all known congeners by the following combination of characters: 1) no lateral chaetae, only ventral chaetae throughout, 2) a maximum of four chaetae in ventral preclitellar bundles, 3) one chaeta in ventral postclitellar bundles, 4) dorsal pores from VII on, 5) esophageal appendages unbranched, 6) coelomocytes without refractile vesicles, 7) clitellum girdle shaped, well developed, 8) no subneural glands, and 9) spermathecae simple.
Resumo:
Redescription of Balantidium polyvacuolum Li 1963, collected from the hindgut of Xenocypris davidi and Xenocypris argentea, from Niushan Lake Fishery (30A degrees 19' N, 114A degrees 31' E) in Wuhan City, Hubei Province, China in April and June 2007 is presented in this paper to complete Li's description at both light and scanning electronic microscopic levels. The unique body shape of B. polyvacuolum-highly arched dorsal side and flattened ventral surface-as well as its remarkable concave platelet present in the centroventral were well described and compared with other close Balantidium species. Besides, two types of vestibulum shape are observed in our present work, which may suggest the existence of two subspecies or genotype species of these balantidia.
Resumo:
Critical swimming speeds (U-crit) and morphological characters were compared between the F-4 generation of GH-transgenic common carp Cyprinus carpio and the non-transgenic controls. Transgenic fish displayed a mean absolute U-crit value 22.3% lower than the controls. Principal component analysis identified variations in body shape, with transgenic fish having significantly deeper head, longer caudal length of the dorsal region, longer standard length (L-S) and shallower body and caudal region, and shorter caudal length of the ventral region. Swimming speeds were related to the combination of deeper body and caudal region, longer caudal length of the ventral region, shallower head depth, shorter caudal length of dorsal region and L-S. These findings suggest that morphological variations which are poorly suited to produce maximum thrust and minimum drag in GH-transgenic C. carpio may be responsible for their lower swimming abilities in comparison with non-transgenic controls.
Resumo:
A new freshwater phototrophic species of the dinoflagellate genus Peridiniopsis, P. niei sp. nov., is described based on morphology. The new species appeared during spring with densities up to 1.48 x 10(7) cells L-1 in some tributaries and gullies of Three Gorge Reservoir and Lake Donghu, China, forming red tides. Peridiniopsis niei is a cyst-producing freshwater dinoflagellate that belongs to the group Penardii. The plate tabulation is po+x+4 '+0a+6 ''+5c+5s+5 '''+2 '''' and the plate pattern is symmetric. The cells of P. niei are pentagonal in ventral view, the epitheca is larger than the hypotheca, making up about 2/3 the length of the cell. Plate 3 ' is hexangular. The closest species to P. niei is P. penardii (Lemmermann) Bourrelly, but cells of the former are pentagonal, very compressed dorsoventrally, and the hypotheca is truncated with one transparent, robust spine on each antapical plate.
Resumo:
Piguetiella denticulata Liang & Xie, 1997 is redescribed based on the type series collected from the type locality, Songtao River, and streams of the Zhangjiajie Mountain in southwestern China, and specimens from several tributaries of the Yangtze River. This species is characterized by a large body size, the absence of eyespots and dorsal hair chaetae, the same size and shape of dorsal and ventral chaetae, the presence of 3-4 intermediate teeth on both ventral and dorsal chaetae, and an intestinal dilation in IX-X segments. The essential characteristics used to diagnose the genus are discussed and a key to the genus is provided.
Resumo:
A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.
Resumo:
A new genus of Cobitinae, Bibarba gen. n., and a new species, B. bibarba sp. n., were discovered and are described for the Chengjiang River, a tributary of the Hongshuihe River in Guangxi Province of southern China. This river region is characterized by a Karst landscape, and the river that is inhabited by the new genus is a slowly moving stream with arenaceous and cobblestone beds. The new genus resembles Cobitis Linnaeus, 1758 (subfamily Cobitinae) in the shape and pigmentation pattern of their body, the absence of scales on their head, and the presence of a suborbital spine, but differs from it by a single Lamina circularis on the third pectoral fin ray instead of on the base of the second pectoral fin ray; two pairs of barbels (one rostral pair and one maxillo-mandibular pair) instead of three pairs of barbels (one rostral pair, one maxillary pair, and one maxillo-mandibular pair); a relatively thick and short suborbital spine with a strong medio-lateral process instead of a suborbital spine without or with a weakly formed medio-lateral process as in Cobitis; and the lack of a black stripe extending from the occiput through the eye to the insertion of the rostral barbel. The first two characters have not been reported in any other genus of the subfamily Cobitinae. A morphometric character analysis based on PCA reveals differences between B. bibarba and C. sinensis in body size, barbel length, interorbital width, pectoral fin length in males, and the position of the dorsal and ventral fins. Type specimens of the new species are kept in the Freshwater Fishes Museum of the Institute of Hydrobiology at the Chinese Academy of Sciences in Wuhan, Hubei Province. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Nais inflata Liang 1963 is redescribed on the basis of fully mature specimens collected from several localities of the Yangtze River and Yellow River. The observations and redescription resulting from the study of mature specimens supports N. inflata as a valid species. This species is characterized by a thickened body, the ventral crotchets all of the same type with distal tooth usually longer than proximal one, a greater number of dorsal chaetae per bundle, stout dorsal needles with equal minute bifid teeth (<1 mu m), presence of penial chaetae, and prostate glands on vasa deferentia instead of atria. The species is most closely related to N. communis Piguet, 1906 and N. variabilis Piguet, 1906. A table comparing allied species is provided.
Resumo:
We describe three enchytraeid species, including two new species, from Mt. Changbaishan, Jilin Province, northeastern China. Oconnorella cheni sp. nov. is characterized by a simple spermatheca; absence of the oesophageal appendages and seminal vesicle; and nephridia from 6/7, with a distinct funnel and the efferent duct arising from the anterior part of the postseptale. Oconnorella globula sp. nov. is distinguished by a spermatheca with two diverticula; lack of oesophageal appendages and seminal vesicle; and nephridia from 6/7, with distinct funnel and the efferent duct arising from the mid-ventral or posteroventral part of the postseptale. We redescribe Oconnorella changbaishanensis (Xie et al., 2000) from type and live specimens, and amend some characters that cannot be investigated clearly from mounted specimens. We revise the generic diagnosis of Oconnorella.