944 resultados para Variable pricing model
Resumo:
BACKGROUND Listeria (L.) monocytogenes causes fatal infections in many species including ruminants and humans. In ruminants, rhombencephalitis is the most prevalent form of listeriosis. Using multilocus variable number tandem repeat analysis (MLVA) we recently showed that L. monocytogenes isolates from ruminant rhombencephalitis cases are distributed over three genetic complexes (designated A, B and C). However, the majority of rhombencephalitis strains and virtually all those isolated from cattle cluster in MLVA complex A, indicating that strains of this complex may have increased neurotropism and neurovirulence. The aim of this study was to investigate whether ruminant rhombencephalitis strains have an increased ability to propagate in the bovine hippocampal brain-slice model and can be discriminated from strains of other sources. For this study, forty-seven strains were selected and assayed on brain-slice cultures, a bovine macrophage cell line (BoMac) and a human colorectal adenocarcinoma cell line (Caco-2). They were isolated from ruminant rhombencephalitis cases (n = 21) and other sources including the environment, food, human neurolisteriosis cases and ruminant/human non-encephalitic infection cases (n = 26). RESULTS All but one L. monocytogenes strain replicated in brain slices, irrespectively of the source of the isolate or MLVA complex. The replication of strains from MLVA complex A was increased in hippocampal brain-slice cultures compared to complex C. Immunofluorescence revealed that microglia are the main target cells for L. monocytogenes and that strains from MLVA complex A caused larger infection foci than strains from MLVA complex C. Additionally, they caused larger plaques in BoMac cells, but not CaCo-2 cells. CONCLUSIONS Our brain slice model data shows that all L. monocytogenes strains should be considered potentially neurovirulent. Secondly, encephalitis strains cannot be conclusively discriminated from non-encephalitis strains with the bovine organotypic brain slice model. The data indicates that MLVA complex A strains are particularly adept at establishing encephalitis possibly by virtue of their higher resistance to antibacterial defense mechanisms in microglia cells, the main target of L. monocytogenes.
Resumo:
The Interstellar Boundary Explorer (IBEX) has observed the interstellar neutral (ISN) gas flow over the past 6 yr during winter/spring when the Earth's motion opposes the ISN flow. Since IBEX observes the interstellar atom trajectories near their perihelion, we can use an analytical model based upon orbital mechanics to determine the interstellar parameters. Interstellar flow latitude, velocity, and temperature are coupled to the flow longitude and are restricted by the IBEX observations to a narrow tube in this parameter space. In our original analysis we found that pointing the spacecraft spin axis slightly out of the ecliptic plane significantly influences the ISN flow vector determination. Introducing the spacecraft spin axis tilt into the analytical model has shown that IBEX observations with various spin axis tilt orientations can substantially reduce the range of acceptable solutions to the ISN flow parameters as a function of flow longitude. The IBEX operations team pointed the IBEX spin axis almost exactly within the ecliptic plane during the 2012-2014 seasons, and about 5° below the ecliptic for half of the 2014 season. In its current implementation the analytical model describes the ISN flow most precisely for the spin axis orientation exactly in the ecliptic. This analysis refines the derived ISN flow parameters with a possible reconciliation between velocity vectors found with IBEX and Ulysses, resulting in a flow longitude lambda∞ = 74.°5 ± 1.°7 and latitude beta∞ = -5.°2 ± 0.°3, but at a substantially higher ISN temperature than previously reported.
Resumo:
Pregnant BALB/c mice have been widely used as an in vivo model to study Neospora caninum infection biology and to provide proof-of-concept for assessments of drugs and vaccines against neosporosis. The fact that this model has been used with different isolates of variable virulence, varying infection routes and differing methods to prepare the parasites for infection, has rendered the comparison of results from different laboratories impossible. In most studies, mice were infected with similar number of parasites (2 × 10(6)) as employed in ruminant models (10(7) for cows and 10(6) for sheep), which seems inappropriate considering the enormous differences in the weight of these species. Thus, for achieving meaningful results in vaccination and drug efficacy experiments, a refinement and standardization of this experimental model is necessary. Thus, 2 × 10(6), 10(5), 10(4), 10(3) and 10(2) tachyzoites of the highly virulent and well-characterised Nc-Spain7 isolate were subcutaneously inoculated into mice at day 7 of pregnancy, and clinical outcome, vertical transmission, parasite burden and antibody responses were compared. Dams from all infected groups presented nervous signs and the percentage of surviving pups at day 30 postpartum was surprisingly low (24%) in mice infected with only 10(2) tachyzoites. Importantly, infection with 10(5) tachyzoites resulted in antibody levels, cerebral parasite burden in dams and 100% mortality rate in pups, which was identical to infection with 2 × 10(6) tachyzoites. Considering these results, it is reasonable to lower the challenge dose to 10(5) tachyzoites in further experiments when assessing drugs or vaccine candidates.
Resumo:
The medically uninsured population in the United States is 16% or 42 million people and consists of a significant number of Type 2 diabetic patients which is the predominant form of diabetes with 798,000 new cases diagnosed each year. There is limited health services research on uninsured populations concerning health system measures or specific disease conditions. ^ The purpose of this investigation was to determine the impact a newly implemented health care program had on the quality of care provided to patients with Type 2 diabetes. The primary study objective was to compare the quality of care while controlling for utilization, and health status of patients in the new program to their status during the previous financial assistance program. The research design was a retrospective matched-pairs design. The study population consisted of 225 patients who received medical care during 1996 and 1997 at the University Health System in San Antonio, Texas. ^ Six quality of care measures individually failed to demonstrate a statistically significant difference when compared between the two periods. However, an index measure reflecting the number of patients who received all six of the quality of care measures demonstrated a statistically significant increase in 1997 (p-value < 0.05). In 1996, 8 patients (2.6%) received all six medical management components. In 1997, 38 patients (16.8%) received all six medical management components. Four regression models were analyzed; two out of the four models demonstrated inconsistent results based on the program membership variable. ^ It is concluded that there has been a small effect of the Carelink program demonstrated by an increase from 8 to 38 patients receiving all quality of care components for Type 2 diabetics at the UHS. It is recommended that additional research be conducted in order to evaluate the quality of care provided to Type 2 diabetic patients. ^
Resumo:
The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^
Resumo:
Public preferences for policy are formed in a little-understood process that is not adequately described by traditional economic theory of choice. In this paper I suggest that U.S. aggregate support for health reform can be modeled as tradeoffs among a small number of behavioral values and the stage of policy development. The theory underlying the model is based on Samuelson, et al.'s (1986) work and Wilke's (1991) elaboration of it as the Greed/Efficiency/Fairness (GEF) hypothesis of motivation in the management of resource dilemmas, and behavioral economics informed by Kahneman and Thaler's prospect theory. ^ The model developed in this paper employs ordered probit econometric techniques applied to data derived from U.S. polls taken from 1990 to mid-2003 that measured support for health reform proposals. Outcome data are four-tiered Likert counts; independent variables are dummies representing the presence or absence of operationalizations of each behavioral variable, along with an integer representing policy process stage. Marginal effects of each independent variable predict how support levels change on triggering that variable. Model estimation results indicate a vanishingly small likelihood that all coefficients are zero and all variables have signs expected from model theory. ^ Three hypotheses were tested: support will drain from health reform policy as it becomes increasingly well-articulated and approaches enactment; reforms appealing to fairness through universal health coverage will enjoy a higher degree of support than those targeted more narrowly; health reforms calling for government operation of the health finance system will achieve lower support than those that do not. Model results support the first and last hypotheses. Contrary to expectations, universal health care proposals did not provide incremental support beyond those targeted to “deserving” populations—children, elderly, working families. In addition, loss of autonomy (e.g. restrictions on choice of care giver) is found to be the “third rail” of health reform with significantly-reduced support. When applied to a hypothetical health reform in which an employer-mandated Medical Savings Account policy is the centerpiece, the model predicts support that may be insufficient to enactment. These results indicate that the method developed in the paper may prove valuable to health policy designers. ^
Resumo:
This paper considers how the multinational corporation's transfer price responds to changes in international corporate effective tax rates. It extends the decentralized decision-making analysis of transfer pricing in the context of different tax rates. It adopts and extends Bond's (1980) model of the decentralized multinational corporation that assumes centralized transfer pricing. The direction of transfer price change is as expected, while the magnitude of change is likely to be less than predicted by the Horst (1971), centralized decision-making model. The paper extends the model further by assuming negotiated transfer pricing, where the analysis is partitioned into perfect and imperfect information cases. The negotiated transfer pricing result reverts to the Horst (1971), or centralized decision-making, result, under perfect information. Under imperfect information, the centralized decision-making result obtains when top management successfully informs division general managers or it successfully implements a non-monetary reward scheme to encourage division general managers to cooperate. Under simplifying assumptions, centralized decision-making dominates decentralized decision-making, while negotiated transfer pricing weakly dominates centralized transfer pricing.
Resumo:
This study investigates a theoretical model where a longitudinal process, that is a stationary Markov-Chain, and a Weibull survival process share a bivariate random effect. Furthermore, a Quality-of-Life adjusted survival is calculated as the weighted sum of survival time. Theoretical values of population mean adjusted survival of the described model are computed numerically. The parameters of the bivariate random effect do significantly affect theoretical values of population mean. Maximum-Likelihood and Bayesian methods are applied on simulated data to estimate the model parameters. Based on the parameter estimates, predicated population mean adjusted survival can then be calculated numerically and compared with the theoretical values. Bayesian method and Maximum-Likelihood method provide parameter estimations and population mean prediction with comparable accuracy; however Bayesian method suffers from poor convergence due to autocorrelation and inter-variable correlation. ^
Resumo:
Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^
Resumo:
Studies on the relationship between psychosocial determinants and HIV risk behaviors have produced little evidence to support hypotheses based on theoretical relationships. One limitation inherent in many articles in the literature is the method of measurement of the determinants and the analytic approach selected. ^ To reduce the misclassification associated with unit scaling of measures specific to internalized homonegativity, I evaluated the psychometric properties of the Reactions to Homosexuality scale in a confirmatory factor analytic framework. In addition, I assessed the measurement invariance of the scale across racial/ethnic classifications in a sample of men who have sex with men. The resulting measure contained eight items loading on three first-order factors. Invariance assessment identified metric and partial strong invariance between racial/ethnic groups in the sample. ^ Application of the updated measure to a structural model allowed for the exploration of direct and indirect effects of internalized homonegativity on unprotected anal intercourse. Pathways identified in the model show that drug and alcohol use at last sexual encounter, the number of sexual partners in the previous three months and sexual compulsivity all contribute directly to risk behavior. Internalized homonegativity reduced the likelihood of exposure to drugs, alcohol or higher numbers of partners. For men who developed compulsive sexual behavior as a coping strategy for internalized homonegativity, there was an increase in the prevalence odds of risk behavior. ^ In the final stage of the analysis, I conducted a latent profile analysis of the items in the updated Reactions to Homosexuality scale. This analysis identified five distinct profiles, which suggested that the construct was not homogeneous in samples of men who have sex with men. Lack of prior consideration of these distinct manifestations of internalized homonegativity may have contributed to the analytic difficulty in identifying a relationship between the trait and high-risk sexual practices. ^
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
Resumo:
This thesis project is motivated by the potential problem of using observational data to draw inferences about a causal relationship in observational epidemiology research when controlled randomization is not applicable. Instrumental variable (IV) method is one of the statistical tools to overcome this problem. Mendelian randomization study uses genetic variants as IVs in genetic association study. In this thesis, the IV method, as well as standard logistic and linear regression models, is used to investigate the causal association between risk of pancreatic cancer and the circulating levels of soluble receptor for advanced glycation end-products (sRAGE). Higher levels of serum sRAGE were found to be associated with a lower risk of pancreatic cancer in a previous observational study (255 cases and 485 controls). However, such a novel association may be biased by unknown confounding factors. In a case-control study, we aimed to use the IV approach to confirm or refute this observation in a subset of study subjects for whom the genotyping data were available (178 cases and 177 controls). Two-stage IV method using generalized method of moments-structural mean models (GMM-SMM) was conducted and the relative risk (RR) was calculated. In the first stage analysis, we found that the single nucleotide polymorphism (SNP) rs2070600 of the receptor for advanced glycation end-products (AGER) gene meets all three general assumptions for a genetic IV in examining the causal association between sRAGE and risk of pancreatic cancer. The variant allele of SNP rs2070600 of the AGER gene was associated with lower levels of sRAGE, and it was neither associated with risk of pancreatic cancer, nor with the confounding factors. It was a potential strong IV (F statistic = 29.2). However, in the second stage analysis, the GMM-SMM model failed to converge due to non- concaveness probably because of the small sample size. Therefore, the IV analysis could not support the causality of the association between serum sRAGE levels and risk of pancreatic cancer. Nevertheless, these analyses suggest that rs2070600 was a potentially good genetic IV for testing the causality between the risk of pancreatic cancer and sRAGE levels. A larger sample size is required to conduct a credible IV analysis.^
Resumo:
In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.