911 resultados para Usability,usabilità, goal oriented design, generazione automatica interfaccia web
Resumo:
Hybrid MIMO Phased-Array Radar (HMPAR) is an emerging technology that combines MIMO (multiple-in, multiple-out) radar technology with phased-array radar technology. The new technology is in its infancy, but much of the theoretical work for this specific project has already been completed and is explored in great depth in [1]. A brief overview of phased-array radar systems, MIMO radar systems, and the HMPAR paradigm are explored in this paper. This report is the culmination of an effort to support research in MIMO and HMPAR utilizing a concept called intrapulse beamscan. Using intrapulse beamscan, arbitrary spatial coverage can be achieved within one MIMO beam pulse. Therefore, this report focuses on designing waveforms for MIMO radar systems with arbitrary spatial coverage using that phenomenon. With intrapulse beamscan, scanning is done through phase-modulated signal design within one pulse rather than phase-shifters in the phased array over multiple pulses. In addition to using this idea, continuous phase modulation (CPM) signals are considered for their desirable peak-to-average ratio property as well as their low spectral leakage. These MIMO waveforms are designed with three goals in mind. The first goal is to achieve flexible spatial coverage while utilizing intrapulse beamscan. As with almost any radar system, we wish to have flexibility in where we send our signal energy. The second goal is to maintain a peak-to-average ratio close to 1 on the envelope of these waveforms, ensuring a signal that is close to constant modulus. It is desired to have a radar system transmit at the highest available power; not doing so would further diminish the already very small return signals. The third goal is to ensure low spectral leakage using various techniques to limit the bandwidth of the designed signals. Spectral containment is important to avoid interference with systems that utilize nearby frequencies in the electromagnetic spectrum. These three goals are realized allowing for limitations of real radar systems. In addition to flexible spatial coverage, the report examines the spectral properties of utilizing various space-filling techniques for desired spatial areas. The space-filling techniques examined include Hilbert/Peano curves and standard raster scans.
Resumo:
Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.
Resumo:
Slope stability analysis is a major area of research in geotechnical engineering. That being said, very little is written in the geotechnical engineering literature on the design of box-cuts. The goal of this thesis will be to investigate the proper design of a boxcuts, and to design a box-cut for access to an underground copper mine. Issues that need to be considered in the box-cut design include, long term dewatering design, slope stability analysis, and erosion control. The soils at the project site were extremely low permeability, as a result a system of ejectors was designed both to improve the stability of the slopes and prevent flooding. Based on the results of limit equilibrium analysis and finite element analysis, a slope design of two horizontal on one vertical was selection, with a rock fill buttress providing reinforcement. Finally, Michigan DOT standards for seeding were used to provide erosion control
Resumo:
This dissertation investigates the curricular implementation of usability instruction in technical communication. Though there are a plethora of publications and studies on usability in technical communication, little discussion focuses on usability instruction in the classroom or its implementation in the curriculum. Thus, this exploratory qualitative research seeks to contribute to a better understanding about technical communication students' and instructors' knowledge of and experiences with usability practices in the classroom, the challenges that impacted their usability efforts, and their recommendations on how their efforts could be improved. The study results demonstrate the need for more productive discussion on this issue and for developing more effective strategies for implementing usability in the classroom.
Resumo:
This paper presents the results of a comprehensive literature review of the organization of purchasing covering the period from 1967 to 2009. The review provides a structured overview of prior research topics and findings and identifies gaps in the existing literature that may be addressed in future research. The intention of the review is to a) synthesize prior research, b) provide researchers with a structural framework on which future research on the organization of purchasing may be oriented, and c) suggest promising areas for future research.
Resumo:
Design rights represent an interesting example of how the EU legislature has successfully regulated an otherwise heterogeneous field of law. Yet this type of protection is not for all. The tools created by EU intervention have been drafted paying much more attention to the industry sector rather than to designers themselves. In particular, modern, digitally based, individual or small-sized, 3D printing, open designers and their needs are largely neglected by such legislation. There is obviously nothing wrong in drafting legal tools around the needs of an industrial sector with an important role in the EU economy, on the contrary, this is a legitimate and good decision of industrial policy. However, good legislation should be fair, balanced, and (technologically) neutral in order to offer suitable solutions to all the players in the market, and all the citizens in the society, without discriminating the smallest or the newest: the cost would be to stifle innovation. The use of printing machinery to manufacture physical objects created digitally thanks to computer programs such as Computer-Aided Design (CAD) software has been in place for quite a few years, and it is actually the standard in many industrial fields, from aeronautics to home furniture. The change in recent years that has the potential to be a paradigm-shifting factor is a combination between the opularization of such technologies (price, size, usability, quality) and the diffusion of a culture based on access to and reuse of knowledge. We will call this blend Open Design. It is probably still too early, however, to say whether 3D printing will be used in the future to refer to a major event in human history, or instead will be relegated to a lonely Wikipedia entry similarly to ³Betamax² (copyright scholars are familiar with it for other reasons). It is not too early, however, to develop a legal analysis that will hopefully contribute to clarifying the major issues found in current EU design law structure, why many modern open designers will probably find better protection in copyright, and whether they can successfully rely on open licenses to achieve their goals. With regard to the latter point, we will use Creative Commons (CC) licenses to test our hypothesis due to their unique characteristic to be modular, i.e. to have different license elements (clauses) that licensors can choose in order to adapt the license to their own needs.”
Resumo:
ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.
Resumo:
1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25.8x25.8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achieving specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions.
Resumo:
Because of the unknown usage scenarios, designing the elementary services of a service-oriented architecture (SOA), which form the basis for later composition, is rather difficult. Various design guide lines have been proposed by academia, tool vendors and consulting companies, but they differ in the rigor of validation and are often biased toward some technology. For that reason a multiple-case study was conducted in five large organizations that successfully introduced SOA in their daily business. The observed approaches are contrasted with the findings from a literature review to derive some recommendations for SOA service design.
Resumo:
BACKGROUND: The most effective decision support systems are integrated with clinical information systems, such as inpatient and outpatient electronic health records (EHRs) and computerized provider order entry (CPOE) systems. Purpose The goal of this project was to describe and quantify the results of a study of decision support capabilities in Certification Commission for Health Information Technology (CCHIT) certified electronic health record systems. METHODS: The authors conducted a series of interviews with representatives of nine commercially available clinical information systems, evaluating their capabilities against 42 different clinical decision support features. RESULTS: Six of the nine reviewed systems offered all the applicable event-driven, action-oriented, real-time clinical decision support triggers required for initiating clinical decision support interventions. Five of the nine systems could access all the patient-specific data items identified as necessary. Six of the nine systems supported all the intervention types identified as necessary to allow clinical information systems to tailor their interventions based on the severity of the clinical situation and the user's workflow. Only one system supported all the offered choices identified as key to allowing physicians to take action directly from within the alert. Discussion The principal finding relates to system-by-system variability. The best system in our analysis had only a single missing feature (from 42 total) while the worst had eighteen.This dramatic variability in CDS capability among commercially available systems was unexpected and is a cause for concern. CONCLUSIONS: These findings have implications for four distinct constituencies: purchasers of clinical information systems, developers of clinical decision support, vendors of clinical information systems and certification bodies.
Resumo:
BACKGROUND Randomized control trials (RCTs) stopped early for benefit (truncated RCTs) are increasingly common and, on average, overestimate the relative magnitude of benefit by approximately 30%. Investigators stop trials early when they consider it is no longer ethical to enroll patients in a control group. The goal of this systematic review is to determine how investigators of ongoing or planned RCTs respond to the publication of a truncated RCT addressing a similar question. METHODS/DESIGN We will conduct systematic reviews to update the searches of 210 truncated RCTs to identify similar trials ongoing at the time of publication, or started subsequently, to the truncated trials ('subsequent RCTs'). Reviewers will determine in duplicate the similarity between the truncated and subsequent trials. We will analyze the epidemiology, distribution, and predictors of subsequent RCTs. We will also contact authors of subsequent trials to determine reasons for beginning, continuing, or prematurely discontinuing their own trials, and the extent to which they rely on the estimates from truncated trials. DISCUSSION To the extent that investigators begin or continue subsequent trials they implicitly disagree with the decision to stop the truncated RCT because of an ethical mandate to administer the experimental treatment. The results of this study will help guide future decisions about when to stop RCTs early for benefit.
Resumo:
The Liquid Argon Time Projection Chamber (LArTPC) is a prime type of detector for future large-mass neutrino observatories and proton decay searches. In this paper we present the design and operation, as well as experimental results from ARGONTUBE, a LArTPC being operated at the AEC-LHEP, University of Bern. The main goal of this detector is to prove the feasibility of charge drift over very long distances in liquid argon. Many other aspects of the LArTPC technology are also investigated, such as a voltage multiplier to generate high voltage in liquid argon (Greinacher circuit), a cryogenic purification system and the application of multi-photon ionization of liquid argon by a UV laser. For the first time, tracks induced by cosmic muons and UVlaser beam pulses have been observed and studied at drift distances of up to 5 m, the longest reached to date.
Resumo:
Background: Motive-oriented therapeutic relationship (MOTR) was postulated to be a particularly helpful therapeutic ingredient in the early treatment phase of patients with personality disorders, in particular with borderline personality disorder (BPD). The present randomized controlled study using an add-on design is the first study to test this assumption in a 10-session general psychiatric treatment with patients presenting with BPD on symptom reduction and therapeutic alliance. Methods: A total of 85 patients were randomized. They were either allocated to a manual-based short variant of the general psychiatric management (GPM) treatment (in 10 sessions) or to the same treatment where MOTR was deliberately added to the treatment. Treatment attrition and integrity analyses yielded satisfactory results. Results: The results of the intent-to-treat analyses suggested a global efficacy of MOTR, in the sense of an additional reduction of general problems, i.e. symptoms, interpersonal and social problems (F 1, 73 = 7.25, p < 0.05). However, they also showed that MOTR did not yield an additional reduction of specific borderline symptoms. It was also shown that a stronger therapeutic alliance, as assessed by the therapist, developed in MOTR treatments compared to GPM (Z 55 = 0.99, p < 0.04). Conclusions: These results suggest that adding MOTR to psychiatric and psychotherapeutic treatments of BPD is promising. Moreover, the findings shed additional light on the perspective of shortening treatments for patients presenting with BPD.
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accuracy