963 resultados para Uric acid.
Resumo:
Mr=328.32, triclinic, P1, a=5.801 (1), b=7.977(1), c=9.110(2)A, ~t=102.33 (1), fl= 97.92 (1), y= 109.82 (1) °, v= 377.2 (1) A 3 at 293 K, Z=I, D x=1.45, D m=1.45 g cm -3, 2(MoKs)= 0.7107 A, ~ = 0.74 cm -1, F(000) = 174.0. R = 0.046 for 990 unique observed [F o > 4O(Fo)] reflections. The crystal structure is stabilized by extensive hydrogen bonding involving all N and O atoms.
Resumo:
Pseudomonas aeruginosa tRNA was treated with iodine, CNBr and N-ethylmaleimide,three thionucleotide-specific reagents. Reaction with iodine resulted in extensive loss of acceptor activity by lysine tRNA, glutamic acid tRNA, glutamine tRNA, serine tRNA and tyrosine tRNA. CNBr treatment resulted in high loss of acceptor ability by lysine tRNA, glutamic acid tRNA and glutamine tRNA. Only the acceptor ability of tyrosine tRNA was inhibited up to 66% by N-ethylmaleimide treatment, a reagent specific for 4-thiouridine. By the combined use of benzoylated DEAE-cellulose and DEAESephadex columns, lysine tRNA of Ps. aeruginosa was resolved into two isoaccepting species, a major, tRNAL'y and a minor, tRNA'Ys. Co-chromatography of 14C-labelled tRNALYS and 3H-labelled tRNALy, on benzoylated DEAE-cellulose at pH4.5 gave two distinct, non-superimposable profiles for the two activity peaks, suggesting that they were separate species. The acceptor activity of these two species was inhibited by about 95% by iodine and CNBr. Both the species showed equal response to codons AAA and AAG and also for poly(A) and poly(A1,Gl) suggesting that the anticodon of these species was UUU. Chemical modification of these two species by iodine did not inhibit the coding response. The two species of lysine of Ps. aeruginosa are truly redundant in that they are indistinguishable either by chemical modification or by their coding response.
Resumo:
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics. The compound could be readily hydrolysed to retinoic acid both by acid and alkali treatments and reduced by lithium aluminium hydride to vitamin A alcohol (retinol). The spectral changes with antimony trichloride reagent were similar to those observed for retinoic acid. The metabolism of retinoic acid anhydride was found to be similar to that of retinoic acic. When administered either orally or intraperitoneally, the compound promotes growth in vitamin A-deficient rats. Time-course experiments revealed that retinoic acid anhydride is converted into retinoic acid by non-enzymatic hydrolysis and thereby exerts its biological activity. The biopotency of the anhydride was found to be nearly the same as that of the acid. A new method of preparing esters of retinoic acid employing retinoic acid anhydride as an intermediate, has been described.
Resumo:
Recent investigations into plant tissues have indicated that the free form of the natural polyphenolic antioxidant, ellagic acid (EA), is much more plentiful than first envisaged; consequently a re-assessment of solvent systems for the extraction of this water-insoluble form is needed. As EA solubility and its UV-Vis spectrum, commonly used for detection and quantification, are both governed by pH, an understanding of this dependence is vital if accurate EA measurements are to be achieved. After evaluating the pH effects on the solubility and UV-Vis spectra of commercial EA, an extraction protocol was devised that promoted similar pH conditions for both standard solutions and plant tissue extracts. The extraction so devised followed by HPLC with photodiode-array detection (DAD) provided a simple, sensitive and validated methodology that determined free EA in a variety of plant extracts. The use of 100 % methanol or a triethanolamine-based mixture as the standard dissolving solvents were the best choices, while these higher pH-generating solvents were more efficient in extracting EA from the plants tested with the final choice allied to the plants’ natural acidity. Two of the native Australian plants anise myrtle (Syzygium anisatum) and Kakadu plum (Terminalia ferdinandiana) exhibited high concentrations of free EA. Furthermore, the dual approach to measuring EA UV-Vis spectra made possible an assessment of the effect of acidified eluent on EA spectra when the DAD was employed.
Resumo:
Isomeric half eater acid chlorides derived from 1,2-and 1-3-carboxylic acids give rise to the same oxonium salt with Lewis acids.
Resumo:
2-Phenethyl alcohol (2-PEA) and 2-phenyllactic acid (2-PLA) were isolated from the culture filtrates of Candida species grown in media containing peptone or phenylalanine as nitrogen source. These compounds were characterized by comparing their UV, IR, and NMR spectral properties with authentic samples. Candida species differed markedly in their production of 2-PEA and 2-PLA. Experiments using [14C]-phenylalanine indicated that both 2-PEA and 2-PLA are synthesised from L-phenylalanine. A pathway for the biosynthesis of 2-PEA from L-phenylalanine has been proposed.
Resumo:
Sphingomyelin was hydrolyzed to ceramide near quantitatively on treatment with 40% HF at 40°C for 72 hr. The reaction of sphingomyelin with HF is much slower than phosphoglycerides. HF treatment did not alter either the fatty acid composition or the stereochemical configuration of the sphingosine moiety of ceramide formed.
Resumo:
THE unusual amino acid beta-N-oxalyl-L-alpha, beta-diaminopropionic acid (ODAP), isolated from the seeds of Lathyrus sativus is a potent neurotoxin1−3. It produces biochemical changes in the brain typical of an excitant amino acid and is implicated in the aetiology of human neurolathyrism caused by eating the seeds of L. sativus 4−6. It may act as a glutamate antagonist: ODAP inhibits glutamate oxidation7 possibly by inhibiting glutamate uptake in bovine brain mitochondria; it also acts as a competitive inhibitor of glutamate uptake in certain strains of yeast8, and a similar process might occur at the synaptic level. Any effect of ODAP on glutamate uptake at synapses is significant in view of the neurotransmitter function of glutamate, which seems to be neuroexcitory as well as neurotoxic9−12. But Balcar and Johnston13 have shown with rat brain slices that ODAP does not inhibit the glutamate uptake by the high affinity system.
Resumo:
An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.
Resumo:
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.
Resumo:
This study reports an investigation of the ion exchange treatment of sodium chloride solutions in relation to use of resin technology for applications such as desalination of brackish water. In particular, a strong acid cation (SAC) resin (DOW Marathon C) was studied to determine its capacity for sodium uptake and to evaluate the fundamentals of the ion exchange process involved. Key questions to answer included: impact of resin identity; best models to simulate the kinetics and equilibrium exchange behaviour of sodium ions; difference between using linear least squares (LLS) and non-linear least squares (NLLS) methods for data interpretation; and, effect of changing the type of anion in solution which accompanied the sodium species. Kinetic studies suggested that the exchange process was best described by a pseudo first order rate expression based upon non-linear least squares analysis of the test data. Application of the Langmuir Vageler isotherm model was recommended as it allowed confirmation that experimental conditions were sufficient for maximum loading of sodium ions to occur. The Freundlich expression best fitted the equilibrium data when analysing the information by a NLLS approach. In contrast, LLS methods suggested that the Langmuir model was optimal for describing the equilibrium process. The Competitive Langmuir model which considered the stoichiometric nature of ion exchange process, estimated the maximum loading of sodium ions to be 64.7 g Na/kg resin. This latter value was comparable to sodium ion capacities for SAC resin published previously. Inherent discrepancies involved when using linearized versions of kinetic and isotherm equations were illustrated, and despite their widespread use, the value of this latter approach was questionable. The equilibrium behaviour of sodium ions form sodium fluoride solution revealed that the sodium ions were now more preferred by the resin compared to the situation with sodium chloride. The solution chemistry of hydrofluoric acid was suggested as promoting the affinity of the sodium ions to the resin.
Resumo:
The complex crystallizes in the space group P21/c with four formula units in a unit cell of dimensions a= 12.747, b= 7.416, c= 17.894 A and/3= 90.2 °. The structure has been solved by the symbolic addition procedure using three-dimensional photographic data and refined to an R value of 0.079 for 2019 observed reflexions. The pyramidal nature of the two hetero nitrogen atoms in the antipyrine molecule is inter:nediate between that observed in free antipyrine and in some of its metal complexes. The molecule is more polar than that in crystals of free antipyrine but less so compared with that in metal complexes. In the salicylic acid molecule, the hydroxyl group forms an internal hydrogen bond with one of the oxygen atoms in the carboxyl group. The association between the salicylic acid and the antipyrine molecules is achieved through an intermolecular hydrogen bond with the other carboxyl oxygen atom in the salicylic acid molecule as the proton donor and the carboxyl oxygen atom of the antipyrine molecule as the acceptor.
Resumo:
Temperature dependence of chlorine nuclear quadrupole resonance in 2-chloro 5-nitrobenzoic acid and 4-chloro 3-nitrobenzoic acid has been investigated in the region 77° K to room temperature. No phase transition has been observed. The results are analysed to obtain the torsional frequencies and their temperature dependence. A nonlinear temperature dependence is obtained for the torsional frequencies.