975 resultados para Uranus (Planet)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Background Toxoplasmosis is a zoonosis caused by an obligate intracellular parasite, Toxoplasma gondii, which affects warm-blooded animals including humans. Its prevalence rates usually vary in different regions of the planet. Methods In this study, an analysis of the seroprevalence of toxoplasmosis among Brazilian students was proposed by means of IgG specific antibodies detection. The presence of anti-Toxoplasma gondiiantibodies by indirect fluorescent antibody test (IFAT) was also evaluated in order to compare it with enzyme-linked immunosorbent assay (ELISA) and to assess the use of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and o-phenylenediamine dihydrochloride chromogens. Results The IFAT method showed a seroprevalence of 22.3%. These results were similar to those obtained by ELISA (24.1%). The seroprevalence was directly estimated from the IgG avidity, which showed that in a sample of 112 students, three of them had acute infection, an incidence of 1.6% in the studied population. Conclusion In this study, the use of different chromogenic substrates in immunoenzymatic ELISA assays did not display different sensitivity in the detection of T. gondii-reagent serum. The extrapolation of results to this population must be carefully considered, since the investigation was conducted on a reduced sample. However, it allows us to emphasize the importance of careful and well prepared studies to identify risk factors for toxoplasmosis, to adopt preventive measures and to offer guidance to at-risk populations about the disease.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1: 5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180 degrees with 5 degrees increments totalling nearly 6 x 10(5) numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10 degrees,110 degrees]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60 degrees,130 degrees]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Consider a finite body of mass m (C1) with moments of inertia A, B and C. This body orbits another one of mass much larger M (C2), which at first will be taken as a point, even if it is not completely spherical. The body C1, when orbit C2, performs a translational motion near a Keplerian. It will not be a Keplerian due to external disturbances. We will use two axes systems: fixed in the center of mass of C1 and other inertial. The C1 attitude, that is, the dynamic rotation of this body is know if we know how to situate mobile system according to inertial axes system. The strong influence exerted by C2 on C1, which is a flattened body, generates torques on C1, what affects its dynamics of rotation. We will obtain the mathematical formulation of this problem assuming C1 as a planet and C2 as the sun. Also applies to case of satellite and planet. In the case of Mercury-Sun system, the disturbing potential that governs rotation dynamics, for theoretical studies, necessarily have to be developed by powers of the eccentricity. As is known, such expansions are delicate because of the convergence issue. Thus, we intend to make a development until the third order (superior orders are not always achievable because of the volume of terms generated in cases of first-order resonances). By defining a modern set of canonical variables (Andoyer), we will assemble a disturbed Hamiltonian problem. The Andoyer's Variables allow to define averages, which enable us to discard short-term effects. Our results for the resonant angle variation of Mercury are in full agreement with those obtained by D'Hoedt & Lemaître (2004) and Rambaux & Bois (2004)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper proposes an observation that leads to new ways of thinking regarding to women's in science and technology fields, based on previous researches that report this matter. The first detailed work on the participation and achievement of women in Science was "Women in Science" in 1913, written by HJ Mozans, a Catholic priest. According to Schienbinger (2001), this work used to invite women to develop activities in scientific areas and unleash the energies of half population of the planet. It's also important to consider the role of international organs, such as UNESCO, which since the 1990s develops studies, researches and conferences in order to discuss the inclusion of women in activities which involve science and technology. A survey based on data from literature is necessary to make a assessment on this subject in current times.
Resumo:
The recycling in Engineering can be used for reuse of material disposed remains into the environment. The recycling of construction residues comes from antique and was applied in the reconstruction of Europe after World War II. From the environmental point of view, the main problem with the residues that can be recycled, is related to its irregular deposition and the large volumes produced. In this article we aim to approach the recycling techniques through literature surveys and propose techno-artistic works that solve the problem of wasting residues in our planet.
Resumo:
The dynamics of the rotation of a satellite is an old and classical problem, specially in the Euler formalism. However, with these variables, even in torque free motion problem, the integrability of the system is far from trivial, mainly when the three moments of the inertia are not equal. Another disadvantage occurs when the inclinations between some plans are null or close to zero, so the nodes become undetermined. In this work, we propose the use of modern Andoyer's variables. These are a set of canonical variables and therefore some significant advantages can be obtained when dealing with perturbation methods. On other the hand, the integrability of the torque free motion becomes very clear, as the system is reduced to a problem of one degree of freedom. The elimination of the singularities mentioned above, can be solved very easily, with Pincaré-type variables. In this work we give the background concepts of the Andoyer's variables and the disturbing potential is obtained for the rotational dynamics of a satellite perturbed by a planet. In the case when A = B (moments of inertia) and due to the current variables, the averaged system is trivially obtained through very simple integrations
Resumo:
The use of alternative energy systems in the current days is an urgent necessity due to the problems that the planet is facing as the heating and loss of ozone layer. The scarcity of conventional energy is another problem that must be solved for the future of humanity. It must be considered that the people are inhabiting places moved away not always with available energy. The application of technologies as automation and control can help us to solve this problem. Therefore, this work aimed at apply an equipment of industrial usage, the Programmable Logical Controller, PLC, in alternative energies systems, as eolic generation and fotovoltaic generation used for water pumping, aiming the automatic control and the efficiency in the places where it has simultaneous availability of these sources, based in criterion of priority that previously established itself between them. It was made a hydraulic and energetic evaluation of the energy system, eolic and fotovoltaic, used in the automatic control system of pumping, in the place of accomplishment of the experiment, according to previously established physical conditions. The results have shown that the control system using the PLC is practicable and has trustworthiness. The program developed can be adapted for the use with several power plants in a specific application place. The fotovoltaic system of pumping, using a polycrystalline of 70 Watts connected to a pump Shurflo 8000, showed to be efficient with significant flows in almost all the months. The eolic system of pumping, using an eolic generator of 400 Watts assembled in place of experiment, did not demonstrate energetic capacity for use in this specific type of application.