951 resultados para ULTRAVIOLET-IRRADIATION
Resumo:
We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 J for individual pulses, and the average energy per pulse reached 70 J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.
Resumo:
In this paper we report the results of the first experimental study of the irradiation of low temperature water ice (30 and 90 k) using low energy (4keV) C-13(+) and C-(2+) ions. (CO2)-C-13 and H2o2 were readily formed within the H2O ice with the product ion yield and grwoth rate observed to be highly dependent on both the sample temperature and the ion charge state.
Resumo:
New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251-361 and 32-77 angstrom portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32-49 angstrom portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and for observations of Capella from the Low- Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first-order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50-77 angstrom wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.
Resumo:
Ultraviolet(UV) radiation at four wavelengths (305, 320, 340 and 380 nm) and photosynthetically active radiation (PAR) were measured from May 1994 to October 1999 using Biospherical UV radiometers. A surface reference sensor located on the roof of the Marine Station at Helgoland recorded values every 5 min, and an equivalent profiling underwater sensor was used for measurements in the sea at approximately monthly intervals. The ratio of 305-nm radiation to PAR varied seasonally, with a 14-fold increase from winter to summer. A much weaker seasonal trend (ca. 1.5-fold) was apparent in the ratio of 320-nm radiation to PAR, but there was no seasonal trend in the ratios of 340- or 380-nm radiation to PAR. The year-to-year variations in 305-nm radiation were also much greater relative to PAR than for the other UV wavelengths, but there was no evidence of a change in the 305 nm:PAR ratio over the study period. The ratios of both 305- and 320-nm radiation to PAR increased from dawn to midday, but those of 340- and 380-nm radiation were almost constant through the day, except shortly before sunrise and after sunset when the proportions of 340- and 380-nm radiation increased. Underwater measurements of PAR and UV suggest that the 1% depth for 305-nm radiation was little more than 1 m, but this estimate is valid only for summer and autumn because, in other seasons, few reliable readings for 305-nm radiation could be obtained underwater, and no attenuation coefficient could be calculated. The 1% depths recorded for the other UV wavelengths in the middle 6 months of the year were 2.0 m for 320 nm, 2.6 m for 340 nm and 4.6 m for 380 nm, compared with 12 m for PAR, but the attenuation of all wavebands increased sharply in October and remained higher until March. An analysis of the influence of sun angle, total column ozone concentration, the proportion of skylight, and cloud cover on the ratio of UV wavelengths to PAR in surface irradiance demonstrated that solar angle has a greater influence than ozone concentration on the irradiance at 305 nm, and that the typical occurrence of ozone
Resumo:
Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.
Resumo:
A ureter primary explant technique, using porcine tissue sections was developed to study bystander effects under in vivo like conditions where dividing and differentiated cells are present. Targeted irradiations of ureter tissue fragments were performed with the Gray Cancer Institute charged particle microbeam at a single location (2 microm precision) with 10 3He2+ particles (5 MeV; LET 70 keV/microm). After irradiation the ureter tissue section was incubated for 7 days allowing explant outgrowth to be formed. Differentiation was estimated using antibodies to Uroplakin III, a specific marker of terminal urothelial differentiation. Even although only a single region of the tissue section was targeted, thousands of additional cells were found to undergo bystander-induced differentiation in the explant outgrowth. This resulted in an overall increase in the fraction of differentiated cells from 63.5+/-5.4% to 76.6+/-5.6%. These changes are much greater than that observed for the induction of damage in this model. One interpretation of these results is that in the tissue environment, differentiation is a much more significant response to targeted irradiation and potentially a protective mechanism.
Resumo:
Controlled, multimode microwave irradiation has been employed in a generic solvent-free process to prepare a wide range of ionic liquids based on nitrogen-containing heterocycles. The developed method offers a flexible, small to large-scale approach to prepare ionic liquids, in either sealed or open vessels, in a faster and greener process than any previously described.