925 resultados para Travel Time Prediction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healthcare organizations often benefit from information technologies as well as embedded decision support systems, which improve the quality of services and help preventing complications and adverse events. In Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is implemented, aiming to prioritize patients in need of gynaecology and obstetrics care in two classes: urgent and consultation. The system is designed to evade emergency problems such as incorrect triage outcomes and extensive triage waiting times. The current study intends to improve the triage system, and therefore, optimize the patient workflow through the emergency room, by predicting the triage waiting time comprised between the patient triage and their medical admission. For this purpose, data mining (DM) techniques are induced in selected information provided by the information technologies implemented in CMIN. The DM models achieved accuracy values of approximately 94% with a five range target distribution, which not only allow obtaining confident prediction models, but also identify the variables that stand as direct inducers to the triage waiting times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Heart disease in pregnancy is the leading cause of non- obstetric maternal death. Few Brazilian studies have assessed the impact of heart disease during pregnancy. Objective: To determine the risk factors associated with cardiovascular and neonatal complications. Methods: We evaluated 132 pregnant women with heart disease at a High-Risk Pregnancy outpatient clinic, from January 2005 to July 2010. Variables that could influence the maternal-fetal outcome were selected: age, parity, smoking, etiology and severity of the disease, previous cardiac complications, cyanosis, New York Heart Association (NYHA) functional class > II, left ventricular dysfunction/obstruction, arrhythmia, drug treatment change, time of prenatal care beginning and number of prenatal visits. The maternal-fetal risk index, Cardiac Disease in Pregnancy (CARPREG), was retrospectively calculated at the beginning of prenatal care, and patients were stratified in its three risk categories. Results: Rheumatic heart disease was the most prevalent (62.12%). The most frequent complications were heart failure (11.36%) and arrhythmias (6.82%). Factors associated with cardiovascular complications on multivariate analysis were: drug treatment change (p = 0.009), previous cardiac complications (p = 0.013) and NYHA class III on the first prenatal visit (p = 0.041). The cardiovascular complication rates were 15.22% in CARPREG 0, 16.42% in CARPREG 1, and 42.11% in CARPREG > 1, differing from those estimated by the original index: 5%, 27% and 75%, respectively. This sample had 26.36% of prematurity. Conclusion: The cardiovascular complication risk factors in this population were drug treatment change, previous cardiac complications and NYHA class III at the beginning of prenatal care. The CARPREG index used in this sample composed mainly of patients with rheumatic heart disease overestimated the number of events in pregnant women classified as CARPREG 1 and > 1, and underestimated it in low-risk patients (CARPREG 0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest fires are a serious threat to humans and nature from an ecological, social and economic point of view. Predicting their behaviour by simulation still delivers unreliable results and remains a challenging task. Latest approaches try to calibrate input variables, often tainted with imprecision, using optimisation techniques like Genetic Algorithms. To converge faster towards fitter solutions, the GA is guided with knowledge obtained from historical or synthetical fires. We developed a robust and efficient knowledge storage and retrieval method. Nearest neighbour search is applied to find the fire configuration from knowledge base most similar to the current configuration. Therefore, a distance measure was elaborated and implemented in several ways. Experiments show the performance of the different implementations regarding occupied storage and retrieval time with overly satisfactory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pensions together with savings and investments during active life are key elements of retirement planning. Motivation for personal choices about the standard of living, bequest and the replacement ratio of pension with respect to last salary income must be considered. This research contributes to the financial planning by helping to quantify long-term care economic needs. We estimate life expectancy from retirement age onwards. The economic cost of care per unit of service is linked to the expected time of needed care and the intensity of required services. The expected individual cost of long-term care from an onset of dependence is estimated separately for men and women. Assumptions on the mortality of the dependent people compared to the general population are introduced. Parameters defining eligibility for various forms of coverage by the universal public social care of the welfare system are addressed. The impact of the intensity of social services on individual predictions is assessed, and a partial coverage by standard private insurance products is also explored. Data were collected by the Spanish Institute of Statistics in two surveys conducted on the general Spanish population in 1999 and in 2008. Official mortality records and life table trends were used to create realistic scenarios for longevity. We find empirical evidence that the public long-term care system in Spain effectively mitigates the risk of incurring huge lifetime costs. We also find that the most vulnerable categories are citizens with moderate disabilities that do not qualify to obtain public social care support. In the Spanish case, the trends between 1999 and 2008 need to be further explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patient's clinical condition. Twenty-two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion-weighted (DWI)-MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion-weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patient's clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI-MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI-MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: Several genetic risk scores to identify asymptomatic subjects at high risk of developing type 2 diabetes mellitus (T2DM) have been proposed, but it is unclear whether they add extra information to risk scores based on clinical and biological data. OBJECTIVE: The objective of the study was to assess the extra clinical value of genetic risk scores in predicting the occurrence of T2DM. DESIGN: This was a prospective study, with a mean follow-up time of 5 yr. SETTING AND SUBJECTS: The study included 2824 nondiabetic participants (1548 women, 52 ± 10 yr). MAIN OUTCOME MEASURE: Six genetic risk scores for T2DM were tested. Four were derived from the literature and two were created combining all (n = 24) or shared (n = 9) single-nucleotide polymorphisms of the previous scores. A previously validated clinic + biological risk score for T2DM was used as reference. RESULTS: Two hundred seven participants (7.3%) developed T2DM during follow-up. On bivariate analysis, no differences were found for all but one genetic score between nondiabetic and diabetic participants. After adjusting for the validated clinic + biological risk score, none of the genetic scores improved discrimination, as assessed by changes in the area under the receiver-operating characteristic curve (range -0.4 to -0.1%), sensitivity (-2.9 to -1.0%), specificity (0.0-0.1%), and positive (-6.6 to +0.7%) and negative (-0.2 to 0.0%) predictive values. Similarly, no improvement in T2DM risk prediction was found: net reclassification index ranging from -5.3 to -1.6% and nonsignificant (P ≥ 0.49) integrated discrimination improvement. CONCLUSIONS: In this study, adding genetic information to a previously validated clinic + biological score does not seem to improve the prediction of T2DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of areal bone mineral density (aBMD) for fracture prediction may be enhanced by considering bone microarchitectural deterioration. Trabecular bone score (TBS) helped in redefining a significant subset of non-osteoporotic women as a higher risk group. INTRODUCTION: TBS is an index of bone microarchitecture. Our goal was to assess the ability of TBS to predict incident fracture. METHODS: TBS was assessed in 560 postmenopausal women from the Os des Femmes de Lyon cohort, who had a lumbar spine (LS) DXA scan (QDR 4500A, Hologic) between years 2000 and 2001. During a mean follow-up of 7.8 ± 1.3 years, 94 women sustained 112 fragility fractures. RESULTS: At the time of baseline DXA scan, women with incident fracture were significantly older (70 ± 9 vs. 65 ± 8 years) and had a lower LS_aBMD and LS_TBS (both -0.4SD, p < 0.001) than women without fracture. The magnitude of fracture prediction was similar for LS_aBMD and LS_TBS (odds ratio [95 % confidence interval] = 1.4 [1.2;1.7] and 1.6 [1.2;2.0]). After adjustment for age and prevalent fracture, LS_TBS remained predictive of an increased risk of fracture. Yet, its addition to age, prevalent fracture, and LS_aBMD did not reach the level of significance to improve the fracture prediction. When using the WHO classification, 39 % of fractures occurred in osteoporotic women, 46 % in osteopenic women, and 15 % in women with T-score > -1. Thirty-seven percent of fractures occurred in the lowest quartile of LS_TBS, regardless of BMD. Moreover, 35 % of fractures that occurred in osteopenic women were classified below this LS_TBS threshold. CONCLUSION: In conclusion, LS_aBMD and LS_TBS predicted fractures equally well. In our cohort, the addition of LS_TBS to age and LS_aBMD added only limited information on fracture risk prediction. However, using the lowest quartile of LS_TBS helped in redefining a significant subset of non-osteoporotic women as a higher risk group which is important for patient management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition of the labour force is an important economic factor for a country.Often the changes in proportions of different groups are of interest.I this paper we study a monthly compositional time series from the Swedish LabourForce Survey from 1994 to 2005. Three models are studied: the ILR-transformed series,the ILR-transformation of the compositional differenced series of order 1, and the ILRtransformationof the compositional differenced series of order 12. For each of thethree models a VAR-model is fitted based on the data 1994-2003. We predict the timeseries 15 steps ahead and calculate 95 % prediction regions. The predictions of thethree models are compared with actual values using MAD and MSE and the predictionregions are compared graphically in a ternary time series plot.We conclude that the first, and simplest, model possesses the best predictive power ofthe three models

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We want to shed some light on the development of person mobility by analysing the repeated cross-sectional data of the four National Travel Surveys (NTS) that were conducted in Germany since the mid seventies. The above mentioned driving forces operate on different levels of the system that generates the spatial behaviour we observe: Travel demand is derived from the needs and desires of individuals to participate in spatially separated activities. Individuals organise their lives in an interactive process within the context they live in, using given infrastructure. Essential determinants of their demand are the individual's socio-demographic characteristics, but also the opportunities and constraints defined by the household and the environment are relevant for the behaviour which ultimately can be realised. In order to fully capture the context which determines individual behaviour, the (nested) hierarchy of persons within households within spatial settings has to be considered. The data we will use for our analysis contains information on these three levels. With the analysis of this micro-data we attempt to improve our understanding of the afore subsumed macro developments. In addition we will investigate the prediction power of a few classic sociodemographic variables for the daily travel distance of individuals in the four NTS data sets, with a focus on the evolution of this predictive power. The additional task to correctly measure distances travelled by means of the NTS is threatened by the fact that although these surveys measure the same variables, different sampling designs and data collection procedures were used. So the aim of the analysis is also to detect variables whose control corrects for the known measurement error, as a prerequisite to apply appropriate models in order to better understand the development of individual travel behaviour in a multilevel context. This task is complicated by the fact that variables that inform on survey procedures and outcomes are only provided with the data set for 2002 (see Infas and DIW Berlin, 2003).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance but can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Risks of significant infant drug exposurethrough breastmilk are poorly defined for many drugs, and largescalepopulation data are lacking. We used population pharmacokinetics(PK) modeling to predict fluoxetine exposure levels ofinfants via mother's milk in a simulated population of 1000 motherinfantpairs.METHODS: Using our original data on fluoxetine PK of 25breastfeeding women, a population PK model was developed withNONMEM and parameters, including milk concentrations, wereestimated. An exponential distribution model was used to account forindividual variation. Simulation random and distribution-constrainedassignment of doses, dosing time, feeding intervals and milk volumewas conducted to generate 1000 mother-infant pairs with characteristicssuch as the steady-state serum concentrations (Css) and infantdose relative to the maternal weight-adjusted dose (relative infantdose: RID). Full bioavailability and a conservative point estimate of1-month-old infant CYP2D6 activity to be 20% of the adult value(adjusted by weigth) according to a recent study, were assumed forinfant Css calculations.RESULTS: A linear 2-compartment model was selected as thebest model. Derived parameters, including milk-to-plasma ratios(mean: 0.66; SD: 0.34; range, 0 - 1.1) were consistent with the valuesreported in the literature. The estimated RID was below 10% in >95%of infants. The model predicted median infant-mother Css ratio was0.096 (range 0.035 - 0.25); literature reported mean was 0.07 (range0-0.59). Moreover, the predicted incidence of infant-mother Css ratioof >0.2 was less than 1%.CONCLUSION: Our in silico model prediction is consistent withclinical observations, suggesting that substantial systemic fluoxetineexposure in infants through human milk is rare, but further analysisshould include active metabolites. Our approach may be valid forother drugs. [supported by CIHR and Swiss National Science Foundation(SNSF)]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Analyzing the effect of urinary incontinence as a predictor of the incidence of falls among hospitalized elderly. Method Concurrent cohort study where 221 elderly inpatients were followed from the date of admission until discharge, death or fall. The Kaplan-Meier methods, the incidence density and the Cox regression model were used for the survival analysis and the assessment of the association between the exposure variable and the other variables. Results Urinary incontinence was a strong predictor of falls in the surveyed elderly, and was associated with shorter time until the occurrence of event. Urinary incontinence, concomitant with gait and balance dysfunction and use of antipsychotics was associated with falls. Conclusion Measures to prevent the risk of falls specific to hospitalized elderly patients who have urinary incontinence are necessary.



Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.1 Fundamentals Chest pain is a common complaint in primary care patients (1 to 3% of all consultations) (1) and its aetiology can be miscellaneous, from harmless to potentially life threatening conditions. In primary care practice, the most prevalent aetiologies are: chest wall syndrome (43%), coronary heart disease (12%) and anxiety (7%) (2). In up to 20% of cases, potentially serious conditions as cardiac, respiratory or neoplasic diseases underlie chest pain. In this context, a large number of laboratory tests are run (42%) and over 16% of patients are referred to a specialist or hospitalized (2).¦A cardiovascular origin to chest pain can threaten patient's life and investigations run to exclude a serious condition can be expensive and involve a large number of exams or referral to specialist -­‐ often without real clinical need. In emergency settings, up to 80% of chest pains in patients are due to cardiovascular events (3) and scoring methods have been developed to identify conditions such as coronary heart disease (HD) quickly and efficiently (4-­‐6). In primary care, a cardiovascular origin is present in only about 12% of patients with chest pain (2) and general practitioners (GPs) need to exclude as safely as possible a potential serious condition underlying chest pain. A simple clinical prediction rule (CPR) like those available in emergency settings may therefore help GPs and spare time and extra investigations in ruling out CHD in primary care patients. Such a tool may also help GPs reassure patients with more common origin to chest pain.