854 resultados para Transformation, Bacterial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of the present investigation were 1) to study the effect of bacterial lipopolysaccharide (LPS) on rat gastric emptying (GE) and 2) to investigate a possible involvement of the vagus nerve in the gastric action of LPS. Endotoxin from E. coli (strain 055:B5) was administered sc, ip or iv to male Wistar rats (220-280 g body weight) at a maximum dose of 50 µg/kg animal weight. Control animals received an equivalent volume of sterile saline solution. At a given time period after LPS administration, GE was evaluated by measuring gastric retention 10 min after the orogastric infusion of a test meal (2 ml/100 g animal weight), which consisted of 0.9% NaCl plus the marker phenol red (6 mg/dl). One group of animals was subjected to bilateral subdiaphragmatic vagotomy or sham operation 15 days before the test. A significant delay in GE of the test meal was observed 5 h after iv administration of the endotoxin at the dose of 50 µg/kg animal weight. The LPS-induced delay of GE was detected as early as 30 min and up to 8 h after endotoxin administration. The use of different doses of LPS ranging from 5 to 50 µg/kg animal weight showed that the alteration of GE was dose dependent. In addition, vagotomized animals receiving LPS displayed a GE that was not significantly different from that of the sham control group. However, a participation of the vagus nerve in LPS-induced delay in GE could not be clearly demonstrated by these experiments since vagotomy itself induced changes in this gastric parameter. The present study provides a suitable model for identifying the mechanisms underlying the effects of LPS on gastric emptying

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cirrhotic patients (23 with alcoholic cirrhosis, 5 with posthepatitic cirrhosis and 2 with cryptogenic cirrhosis) with ascites and portal hypertension were studied and divided into two groups corresponding to high or low risk to develop spontaneous bacterial peritonitis (SBP) related to the concentration of total protein in the ascitic fluid (A-TP): group I (high risk): A-TP£1.5 g/dl and group II (low risk): A-TP>1.5 g/dl. Fibronectin (FN), C3 and C4 concentrations were measured by radial immunodiffusion while total protein was measured by the biuret method. The mean values (group I vs group II) of C3 (12.59 ± 4.72 vs 24.53 ± 15.58 mg/dl), C4 (4.26 ± 3.87 vs 7.26 ± 4.14 mg/dl) and FN (50.47 ± 12.49 vs 75.89 ± 24.70 mg/dl) in the ascitic fluid were significantly lower (P<0.05) in the group considered to be at high risk for SBP. No significant difference was observed in the plasma/ascites fibronectin ratio (3.91 ± 1.21 vs 3.80 ± 1.26) or gradient (131.46 ± 64.01 vs 196.96 ± 57.38) between groups. Fibronectin in ascites was significantly correlated to C3 (r = 0.76), C4 (r = 0.58), total protein (r = 0.73) and plasma FN (r = 0.58) (P<0.05). The data suggest that the FN concentration in ascites is related to the opsonic capacity of this fluid, and that its concentration in the ascitic fluid may be a biochemical risk factor indicator for the development of spontaneous bacterial peritonitis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the response of rats suffering from moderate renal insufficiency to bacterial lipopolysaccharide (LPS, or endotoxin). The study involved 48 eight-week-old male SPF Wistar rats (175-220 g) divided into two groups of 24 animals each. One group underwent 5/6 nephrectomy while the other was sham-operated. Two weeks after surgery, the animals were further divided into two subgroups of 12 animals each and were fasted for 20 h but with access to water ad libitum. One nephrectomized and one sham-treated subgroup received E. coli LPS (25 µg/kg, iv) while the other received a sterile, pyrogen-free saline solution. Gastric retention (GR) was determined 10 min after the orogastric infusion of a standard saline test meal labeled with phenol red (6 mg/dl). The gastric emptying of the saline test meal was studied after 2 h. Renal function was evaluated by measuring the plasma levels of urea and creatinine. The levels of urea and creatinine in 5/6 nephrectomized animals were two-fold higher than those observed in the sham-operated rats. Although renal insufficiency did not change gastric emptying (median %GR = 26.6 for the nephrectomized subgroup and 29.3 for the sham subgroup), LPS significantly retarded the gastric emptying of the sham and nephretomized groups (median %GR = 42.0 and 61.0, respectively), and was significantly greater (P<0.01) in the nephrectomized rats. We conclude that gastric emptying in animals suffering from moderate renal insufficiency is more sensitive to the action of LPS than in sham animals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RECK gene was initially isolated as a transformation suppressor gene encoding a novel membrane-anchored glycoprotein and later found to suppress tumor invasion and metastasis by regulating matrix metalloproteinase-9. Its expression is ubiquitous in normal tissues, but undetectable in many tumor cell lines and in fibroblastic lines transformed by various oncogenes. The RECK gene promoter has been cloned and characterized. One of the elements responsible for the oncogene-mediated downregulation of mouse RECK gene is the Sp1 site, where the Sp1 and Sp3 factors bind. Sp1 transcription factor family is involved in the basal level of promoter activity of many genes, as well as in dynamic regulation of gene expression; in a majority of cases as a positive regulator, or, as exemplified by the oncogene-mediated suppression of RECK gene expression, as a negative transcription regulator. The molecular mechanisms of the downregulation of mouse RECK gene and other tumor suppressor genes are just beginning to be uncovered. Understanding the regulation of these genes may help to develop strategies to restore their expression in tumor cells and, hence, suppress the cells' malignant behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of proteins from Brucella spp, the causative agent of brucellosis, has been the subject of intensive research. We have described an 18-kDa cytoplasmic protein of Brucella abortus and shown the potential usefulness of this protein as an antigen for the serologic diagnosis of brucellosis. The amino acid sequence of the protein showed a low but significant homology with that of lumazine synthases. Lumazine is an intermediate product in bacterial riboflavin biosynthesis. The recombinant form of the 18-kDa protein (expressed in E. coli) folds like the native Brucella protein and has lumazine-synthase enzymatic activity. Three-dimensional analysis by X-ray crystallography of the homolog Bacillus subtilis lumazine synthase has revealed that the enzyme forms an icosahedral capsid. Recombinant lumazine synthase from B. abortus was crystallized, diffracted X rays to 2.7-Å resolution at room temperature, and the structure successfully solved by molecular replacement procedures. The macromolecular assembly of the enzyme differs from that of the enzyme from B. subtilis. The Brucella enzyme remains pentameric (90 kDa) in its crystallographic form. Nonetheless, the active sites of the two enzymes are virtually identical at the structural level, indicating that inhibitors of these enzymes could be viable pharmaceuticals across a broad species range. We describe the structural reasons for the differences in their quaternary arrangement and also discuss the potential use of this protein as a target for the development of acellular vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baltic Sea is unique by its biological, geochemical and physical features. The number of species of larger organisms is small and the species composition is distinctive. On the contrary microbial communities are diverse. Because of the low salinity levels, bacterial communities differ from the ones in the oceans. Knowing the structure of these communities better and how they response to different environmental conditions helps us to estimate how different factors affect the balance and function of the Baltic Sea ecosystem. Bacteria are the key players when it comes to natural biogeochemical processes and human-induced phenomena like eutrophication, oil spills or disposal of other harmful substances to the sea ecosystem. In this thesis, bacterial community structure in the sea surface microlayer and subsurface water of the Archipelago Sea were compared. In addition, the effect of diatom derived polyunsaturated aldehydes on bacterial community structure was studied by a mesocosm experiment. Diesel, crude oil and polycyclic aromatic hydrocarbon degradation capacity of the Baltic Sea bacteria was studied in smaller scale microcosm experiments. In diesel oil experiments bacteria from water phase of the Archipelago Sea was studied. Sediment and iron manganese concretions collected from the Gulf of Finland were used in the crude oil and polycyclic aromatic hydrocarbon experiments. The amount of polycyclic aromatic hydrocarbon degradation genes was measured in all of the oil degradation experiments. The results show how differences in bacterial community structure can be seen in the sea surface when compared to the subsurface waters. The mesocosm experiment demonstrated how diatom-bacteria interactions depend on other factors than diatom derived polyunsaturated aldehydes, which do not seem to have an effect on the bacterial community structure as has been suggested in earlier studies. The dominant bacterial groups in the diesel microcosms differed in samples taken from a pristine site when compared to a site with previous oil exposure in the Archipelago Sea area. Results of the study with sediment and iron-manganese concretions indicate that there are diverse bacterial communities, typical to each bottom type, inhabiting the bottoms of the Gulf of Finland capable to degrade oil and polycyclic aromatic hydrocarbon compounds.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactobacilli isolated from the vaginal tract of women with and without bacterial vaginosis (BV) were identified and characterized for the production of antagonists. Bacterial samples were isolated from healthy women (N = 16), from patients with clinical complaints but without BV (N = 30), and from patients with BV (N = 32). Identification was performed using amplified ribosomal DNA restriction analysis. Production of antagonistic compounds was evaluated by the double-layer diffusion technique using Gram-positive (N = 9) and Gram-negative bacteria (N = 6) as well as yeast (N = 5) as indicator strains. Of a total of 147 isolates, 133 were identified as pertaining to the genus Lactobacillus. Lactobacillus crispatus was the species most frequently recovered, followed by L. johnsonii and L. jensenii. Statistical analysis showed that L. crispatus was more frequent in individuals without BV (P < 0.05). A higher production of antagonists was noted in L. crispatus isolates from healthy women (P < 0.05). More acidic local pH and higher H2O2 production by isolated lactobacilli from healthy women suggest these mechanisms as the possible cause of this antagonism. In conclusion, a significant correlation was detected between the presence and antagonistic properties of certain species of Lactobacillus and the clinical status of the patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 7.4% vaginal extract of the Brazilian pepper tree (Schinus terebinthifolius Raddi) was compared with 0.75% vaginal metronidazole, both manufactured by the Hebron Laboratory, for the treatment of bacterial vaginosis, used at bedtime for 7 nights. The condition was diagnosed using the combined criteria of Amsel and Nugent in two groups of 140 and 137 women, aged between 18 and 40 years. Intention-to-treat analysis was performed. Women were excluded from the study if they presented delayed menstruation, were pregnant, were using or had used any topical or systemic medication, presented any other vaginal infections, presented hymen integrity, or if they reported any history suggestive of acute pelvic inflammatory disease. According to Amsel’s criteria separately, 29 patients (21.2%) treated with the extract and 87 (62.1%) treated with metronidazole were considered to be cured (P < 0.001). According to Nugent’s score separately, 19 women (13.9%) treated with the extract and 79 (56.4%) treated with metronidazole were considered to be cured (P < 0.001). Using the two criteria together, the so-called total cure was observed in 17 women (12.4%) treated with the extract and in 79 women (56.4%) treated with metronidazole (P < 0.001). In conclusion, the cure rate for bacterial vaginosis using a vaginal gel from a pepper tree extract was lower than the rate obtained with metronidazole gel, while side effects were infrequent and non-severe in both groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although enteropathogenic Escherichia coli (EPEC) are well-recognized diarrheal agents, their ability to translocate and cause extraintestinal alterations is not known. We investigated whether a typical EPEC (tEPEC) and an atypical EPEC (aEPEC) strain translocate and cause microcirculation injury under conditions of intestinal bacterial overgrowth. Bacterial translocation (BT) was induced in female Wistar-EPM rats (200-250 g) by oroduodenal catheterization and inoculation of 10 mL 10(10) colony forming unit (CFU)/mL, with the bacteria being confined between the duodenum and ileum with ligatures. After 2 h, mesenteric lymph nodes (MLN), liver and spleen were cultured for translocated bacteria and BT-related microcirculation changes were monitored in mesenteric and abdominal organs by intravital microscopy and laser Doppler flow, respectively. tEPEC (N = 11) and aEPEC (N = 11) were recovered from MLN (100%), spleen (36.4 and 45.5%), and liver (45.5 and 72.7%) of the animals, respectively. Recovery of the positive control E. coli R-6 (N = 6) was 100% for all compartments. Bacteria were not recovered from extraintestinal sites of controls inoculated with non-pathogenic E. coli strains HB101 (N = 6) and HS (N = 10), or saline. Mesenteric microcirculation injuries were detected with both EPEC strains, but only aEPEC was similar to E. coli R-6 with regard to systemic tissue hypoperfusion. In conclusion, overgrowth of certain aEPEC strains may lead to BT and impairment of the microcirculation in systemic organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of research was to investigate the bacterial ecology of tilapia (Oreochromis niloticus) fresh fillets and some factors that can influence its microbial quality. Samples of fish cultivation water (n = 20), tilapia tegument and gut (n = 20) and fresh fillets (n = 20) were collected in an experimental tilapia aquaculture located in the city of Lavras, Minas Gerais, Brazil. Staphylococcus spp., Aeromonas spp., Enterococcus spp. and Enterobacteriaceae were quantified using selective plating. For the enumeration of Pseudomonas spp., the most probable number technique (MPN) was utilized. Bacterial colonies (n = 198) were identified by Gram strain and biochemical tests. Aeromonas spp., Pseudomonas spp., Enterococcus spp. and Enterobacteriaceae were found in the cultivation water (water from a fishpond cultivation), tegument, gut, and fresh fillets. Staphylococcus spp. was not isolated in the cultivation water. Salmonella spp. was not detected. The count variable of 10 to 10³ CFU or MPN.(g or mL)-1. Associated to freshwater tilapia fillet processing, there is a large variety of microorganisms related to foodborne illnesses and fish products deterioration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a trend towards the use of novel technologies nowadays, mainly focused on biological processes, for recycling and the efficient utilization of organic residues that can be metabolized by different microorganisms as a source of energy. In the present study the isolation of bacterial strains from six different agro-industrial by-products and waste was performed with the objective of evaluating their hydrolytic capacities and suitability for use in bioconversion of specific substrates. The 34 isolated strains were screened in specific culture media for the production of various hydrolytic enzymes (lipase, protease, cellulase, and amylase). It was found that 28 strains exhibited proteolytic activity, 18 had lipolytic activity, 13 had caseinolytic activity, 15 had amylolytic activity, and 11 strains exhibited cellulolytic activity. The strains that showed the highest hydrolytic capacities with biotechnological potential were selected, characterized genotipically, and identified as Bacillus, Serratia, Enterococcus, Klebsiella, Stenotrophomonas, Lactococcus, and Escherichia genera. It was concluded that the strain isolates have a high potential for use in the bioconversion of agro-industrial waste, both as a pure culture and as a microbial consortium.