960 resultados para Toll-Like Receptor 3
Resumo:
Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia-reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88(-/-) mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88(-/-) after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-alpha and IL-1 beta level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88(-/-) mice. However, neither TNF-alpha nor IL-1 beta neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.
Resumo:
Innate immune recognition of flagellin is shared by transmembrane TLR5 and cytosolic Nlrc4 (NOD-like receptor family CARD (caspase activation recruitment domain) domain containing 4)/Naip5 (neuronal apoptosis inhibitory protein 5). TLR5 activates inflammatory genes through MYD88 pathway, whereas Nlrc4 and Naip5 assemble multiprotein complexes called inflammasomes, culminating in caspase-1 activation, IL-1 beta/IL-18 secretion, and pyroptosis. Although both TLR5 and Naip5/Nlrc4 pathways cooperate to clear infections, little is known about the relative anti-pathogen effector mechanisms operating through each of them. Here we show that the cytosolic flagellin (FLA-BSDot) was able to activate iNOS, an enzyme previously associated with TLR5 pathway. Using Nlrc4- or Naip5-deficient macrophages, we found that both receptors are involved in iNOS activation by FLA-BSDot. Moreover, distinct from extracellular flagellin (FLA-BS), iNOS activation by intracellular flagellin is completely abrogated in the absence of caspase-1. Interestingly, IL-1 beta and IL-18 do not seem to be important for FLA-BSDot-mediated iNOS production. Together, our data defined an additional anti-pathogen effector mechanism operated through Naip5 and Nlrc4 inflammasomes and illustrated a novel signaling transduction pathway that activates iNOS.
Resumo:
Ischemia and reperfusion injury (IR) is an antigen independent inflammatory process that causes tissue damage. After IR, kidneys up-regulate leukocyte adhesion molecules and toll-like receptors (TLRs). Moreover, injured kidneys can also secrete factors (i.e. heat shock protein) which bind to TLRs and trigger intracellular events culminating with the increase in the gene expression of inflammatory cytokines. FTY720 is an immunomodulatory compound and protects at least in part kidneys submitted to IR. The mechanisms associated with FTY720`s beneficial effects on kidneys after IR remain elusive. We investigated whether FTY720 administration in mice submitted to kidney IR is associated with modulation of TLR2 and TLR4 expression. C57BL/6 mice submitted to 30 min of renal pedicles clamp were evaluated for serum parameters (creatinine, urea and nitric oxide), kidney histology, spleen and kidney infiltrating cells expression of TLR2 and TLR4, resident kidney cells expression of TLR2 and TLR4 and IL-6 protein expression in kidney. FTY720-treated mice presented decrease in serum creatinine, urea and nitric oxide, diminished expression of TLR2 and TLR4 both in spleen and kidney infiltrating cells, and reduced kidney IL-6 protein expression in comparison with IR non-treated mice. However, acute tubular necrosis was present both in IR non-treated and IR + FTY720-treated groups. Also, FTY720 did not prevent TLR2 and TLR4 expression in kidney resident cells. In conclusion, FTY720 can promote kidney function recovery after IR by reducing the inflammatory process. Further studies are needed in order to establish whether TLR2 and TLR4 down regulation should be therapeutically addressed as protective targets of renal function and structure after IR. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Introdução: Imunidade inata é a primeira linha de defesa do hospedeiro contra microorganismos invasores, a qual é mediada por moléculas específicas que reconhecem patógenos, chamadas receptores toll-símile (TLRs). Os TLRs são também capazes de reconhecer ligantes endógenos, tais como conteúdos de células necróticas e proteínas de choque térmico (HSP), resultando na produção de citocinas e ativação do sistema imune adquirido. A função exata dos TLRs ainda é pouco entendida em transplante de órgãos. No entanto, tem sido sugerido que eles podem estar envolvidos na rejeição aguda ou crônica e atuar na resposta do enxerto a lesão por isquemia e reperfusão. Objetivo: Examinar as alterações na expressão gênica dos TLRs durante a fase inicial do transplante pulmonar em humanos e sua relação com citocinas potencialmente envolvidas na lesão por isquemia e reperfusão em transplante de órgãos. Métodos: Foram analisadas biópsias pulmonares de 14 pacientes submetidos a transplante pulmonar (LTx). Estas amostras foram coletadas no final do período de isquemia fria (TIF, n=14), no final do período de isquemia quente (TIQ, n=13),1 hora (n=12) e 2 horas (n=8) após a reperfusão do enxerto. RNA total foi isolado a partir de tecido pulmonar e os níveis de RNA mensageiro (mRNA) dos TLRs (1-10) bem como citocinas (IL-8, IL-6, IL-10, IFN-γ, IL-1β) e proteína de choque térmico 70 (HSP70) foram medidos por reação em cadeia pela polimerase em tempo real. Resultados: Foi detectada a expressão de mRNA de todos TLRs em tecido pulmonar. Nas amostras no TIF, os níveis de mRNA dos TLRs apresentaram-se com diferentes expressões gênicas. Os níveis de expressão dos TLRs, com exceção para o TLR3, estavam altamente correlacionados entre si no TIF e com os níveis de mRNA de IFN-γ, IL-10 e IL-1β e menos significativamente com os níveis de IL-6 e IL-8. Houve diminuição dos níveis de mRNA na grande maioria dos TLRs após reperfusão, o que foi diferente para a maioria das citocinas e HSP70, que apresentaram tendência a aumentar após transplante. A expressão gênica de TLR4 apresentou-se correlacionada com os níveis de IL-8 e IL-1β antes e após transplante (P<0.05). Pulmões de doadores que foram intubados por períodos acima de 72 horas (n=5) apresentaram níveis mais elevados de TLR2 e TLR10 (P<0.05). Conclusão: Pela primeira vez, foi demonstrado que a expressão dos TLRs altera-se durante o período de isquemia e reperfusão em transplante pulmonar em humanos. O tempo de intubação dos doadores pulmonares pode influenciar a expressão de receptores Toll-símile específicos. A correlação entre TLR4 e IL-8/IL-1β sugere que os TLRs pulmonares podem ter alguma função na resposta precoce do enxerto.
Resumo:
In paracoccidioidomycosis, a systemic mycosis caused by the fungus Paracoccidioides brasiliensis (Pb), studies have focused on the role of neutrophils that are involved in the primary response to the fungus. Neutrophil functions are regulated by pro- and anti-inflammatory cytokines. Molecular mechanisms involved in this process are not fully understood, but there are strong evidences about the involvement of toll-like receptors (TLRs). We aimed at evaluating TLR2 and TLR4 expression on human neutrophils activated by GM-CSF, IL-15, TNF-alpha or IFNgamma and challenged with a virulent strain of P. brasiliensis (Pb18). Moreover, we asked if these receptors have a role on fungicidal activity, H(2)O(2) and IL-6, IL-8, TNFalpha and IL-10 production, by activating and challenging cells. All cytokines increased TLR2 and TLR4 expression. Pb18 also increased TLR2 expression, inducing an additional cytokine effect. on the contrary, it inhibited TLR4 expression. All cytokines increased neutrophil fungicidal activity and H(2)O(2) production; however, this process was not associated with TLR2 or TLR4. Neutrophil activation by GMCSF and TNF-alpha resulted in a significant increase of IL-8 production, while IL-15 and IFN-alpha have no effect. Pb18 also augmented IL-8 expression, inducing an additional effect to that of cytokines. None of the cytokines activated neutrophils by releasing IL-10. This cytokine was only detected after Pb18 challenge. Interestingly, IL-8 and IL-10 production involved TLR2 and mainly TLR4 modulation. The present results suggest that Pb18 interaction with neutrophils through TLR2 and TLR4 with consequent IL-8 and IL-10 production may be considered a pathogenic mechanism in paracoccidioidomycosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wisdom's method is applied to 5 : 2 and 7 : 3 resonances. Comparisons with Yoshikawa's nontruncated model are performed: for moderate values of eccentricity, agreement is good, especially for the 5 : 2 resonance. A clear difference between the 5 : 2 and the 7 : 3 resonances is observed: the former (like the 3 : 1 resonance) can suffer significant variations of eccentricity, even starting from very small values close to 0, while the latter seems to undergo such variations but the minimum eccentricity cannot be less than a value near 0.1. In the 7 : 3 resonance, some chaotic motion trapped in a region of very small eccentricity is possible. This is in contrast with the 5 : 2 commensurability, since chaos in this case seems to be always related to significant variations of eccentricity. Recent calculations performed by Šidlichovskÿ using mapping techniques show agreement with the results presented here. © 1992.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Patients with X-linked hyper-IgM syndrome (X-HIGM) due to CD40 ligand (CD40L) mutations are susceptible to fungal pathogens; however, the underlying susceptibility mechanisms remain poorly understood. Objective: To determine whether monocyte-derived dendritic cells (DCs) from patients with X-HIGM exhibit normal responses to fungal pathogens. Methods: DCs from patients and controls were evaluated for the expression of costimulatory (CD80 and CD86) and MHC class II molecules and for their ability to produce IL-12 and IL-10 in response to Candida albicans and Paracoccidioides brasiliensis. We also evaluated the ability of C albicans- and P brasiliensis-pulsed mature DCs to induce autologous T-cell proliferation, generation of T helper (T-H) 17 cells, and production of IFN-gamma, TGF-beta, IL-4, IL-5, and IL-17. Results: Immature DCs from patients with X-HIGM showed reduced expression of CD80, CD86, and HLA-DR, which could be reversed by exogenous trimeric soluble CD40L. Most important, mature DCs from patients with X-HIGM differentiated by coculturing DCs with fungi secreted minimal amounts of IL-12 but substantial amounts of IL-10 compared with mature DCs from normal individuals. Coculture of mature DCs from X-HIGM patients with autologous T cells led to low IFN-g production, whereas IL-4 and IL-5 production was increased. T-cell proliferation and IL-17 secretion were normal. Finally, in vitro incubation with soluble CD40L reversed the decreased IL-12 production and the skewed T-H(2) pattern response. Conclusion: Absence of CD40L during monocyte/DC differentiation leads to functional DC abnormalities, which may contribute to the susceptibility to fungal infections in patients with X-HIGM. (J Allergy Clin Immunol 2012; 129: 778-86.)
Resumo:
1. The present study provides the first in vivo evidence that the cannabinoid CB1 receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB1 receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. 2. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB1 receptor. 3. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB1 receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. 4. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB1 receptor in the control of peripheral factors that modulate cardiovascular function. 5. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB1 receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamicpituitaryadrenal axis. 6. Collectively, the results of the present study indicate that the CB1 receptor modulates neurohypophyseal hormone secretion and systemic factors, such as corticosterone and ANP, thus participating in homeostatic responses to altered extracellular volume and plasma tonicity.