979 resultados para Thermal treatment
Resumo:
Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.
Resumo:
Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms.
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
Osteotomy or bone cutting is a common procedure in orthopaedic surgery, mainly in the treatment of fractures and reconstructive surgery. However, the excessive heat produced during the bone drilling process is a problem that counters the benefits of this type of surgery, because it can result in thermal osteonecrosis, bone reabsorption and damage the osseointegration of implants. The analysis of different drilling parameters and materials can allow to decrease the temperature during the bone drilling process and contribute to a greater success of this kind of surgical interventions. The main goal of this study was to build a numerical three-dimensional model to simulate the drilling process considering the type of bone, the influence of cooling and the bone density of the different composite materials with similar mechanical properties to the human bone and generally used in experimental biomechanics. The numerical methodology was coupled with an experimental methodology. The use of cooling proved to be essential to decrease the material damage during the drilling process. It was concluded that the materials with less porosity and density present less damage in drilling process. The developed numerical model proved to be a great tool in this kind of analysis. © 2016, The Brazilian Society of Mechanical Sciences and Engineering.
Resumo:
The aim of this work was to analyse the effects of leaf removal on Touriga Nacional berry temperature and consequent thermal efficiency for anthocyanins biosynthesis. The field experiment was located at Dão Wine Research Station, Nelas, Portugal in an adult vineyard planted with North-South oriented rows, with the red grape variety Touriga Nacional grafted on 110R rootstock. The vines were trained on a vertical shoot positioning, spur-pruned on a bilateral Royat cordon system and deficit irrigated (50% ETc). The experimental design was a randomized complete block design with four replications of twelve vines per elemental plot, and the following two treatments: basal leaf removal (LR) and a control non-defoliated (ND). Berry temperature (Tb) was measured continuously during the second half (3rd to 19th September) of the 2009 ripening period using two-junction, fine-wires copper-constantan thermocouples manually inserted into the berries and connected to a data logger. A sample of clusters located in different canopy positions (exposed and internal; facing East and West) of 4 vines per treatment were used. To quantify the effect of Tb on anthocyanins biosynthesis, the berry hourly mean temperatures were converted into normal heat hours (NHH) and accumulated per day (NHHd) and per monitoring period (NHHc). For quantification of thermal requirements for anthocyanins synthesis and accumulation, a minimum of 10°C, a maximum of 35°C, and an optimum of 26°C were used. Meteorological variables were measured at an automatic weather station installed within the experimental plot. For all days of the monitoring period, daily average berry temperature (dTb) of all monitored berries was lower in ND treatment than in LR, being the maximum differences between treatments registered on 11th September. The highest dTb differences between treatments were registered on the clusters located at the west side of the canopy on 7th September while dTb of the clusters located in the centre of the canopy was less affected by leaf removal. The control non-defoliated treatment (ND) presented a significantly higher NHHc than that of LR being the higher differences presented by the clusters located in the west side. The lowest differences in NHHc were obtained in the clusters located in the centre of the canopy. Our results show that the thermal efficiency for berry anthocyanins accumulation was significantly affected by leaf removal and that this effect was dependent of the meteorological conditions, time of the day and berry/cluster location into the vine canopy.
Resumo:
Knowledge of current conservation materials and methods together with those adopted in the past is essential to aid research and improve or develop better conservation options. The infill and painting of tile lacunae are subjected to special requirements mainly when used in outdoor settings. A selection of the most commonly used materials was undertaken and performed based on inquiries to practitioners working in the field. The infill pastes comprised organic (epoxy, polyester), inorganic (slaked lime,hydraulic lime and zinc hydroxychloride) and mixed organic–inorganic (slaked lime mixed with a vinylic resin)binders. The selected aggregates were those most commonly used or those already present in the commercially formulated products. The infill pastes were characterised by SEM, MIP, open porosity, water absorption by capillarity, water vapour permeability, thermal and hydric expansibilities and adhesion to the ceramic body. Their performance was assessed after curing, artificial ageing (salt ageing and UV–Temp–RH cycles) and natural ageing. The results were interpreted in terms of their significance as indicators of effectiveness, compatibility and durability
Resumo:
Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.
Resumo:
Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.
Resumo:
O amido é o polissacarídeo mais abundante presente em plantas, composto por amilose e amilopectina. O amido de milho ceroso apresenta somente amilopectina. A modificação do amido é recomendada para melhorar suas aplicações. A hidrólise ácida é utilizada para alterar as propriedades físico-químicas sem modificar o grânulo e o meio alcoólico ajuda na recuperação da molécula após o tratamento. O objetivo do trabalho foi o tratamento químico com HCl 0,5 mol L-1 durante 1 hora em 100 ml de água, etanol ou metanol. Os equipamentos SETSYS Evolução TGADTA / DSC e Rápido Visco-Analisador (RVA-4) foram usados para avaliar as alterações dos amidos. As curvas TG mostraram três eventos (desidratação, estabilidade e decomposição), com resultados similares para todas as amostras. Este resultado pode estar relacionado a resistência da amilopectina para a hidrólise ácida. Na análise reológica (RVA) o tratamento das amostras mostrou valores mais baixos de perfis de viscosidade. A solução ácida forneceu mudanças nas propriedades de pasta do amido e a solução etanólica (solvente mais apolar) foi maior que as demais soluções. Conclui-se portanto que o tratamento dos amidos forneceu produtos com características térmicas similares e com diferentes respostas mecânicas
Resumo:
O pinhão, sementes de Araucaria angustifolia, tem o amido como componente principal. Os amidos oxidados melhoram as características físico-química, de pasta e térmicas dos produtos em processos industriais. O amido de pinhão nativo foi tratado com soluções padronizadas de permanganato de potássio (KMnO4) e as amostras foram analisadas por técnicas termoanalíticas (TG-DTA) em atmosfera inerte. As amostras foram oxidadas da seguinte forma: quatro porções de 20 g (base seca) foram separadas e três foram suspensas em solução de KMnO4 (0,001; 0,002; 0,005 mol L-1) em agitação constante durante 30 minutos, a quarta amostra foi mantida como recebida. As suspensões de amido foram filtradas, lavadas, secas e analisadas. As modificações oxidativas provocaram mudanças estruturais das moléculas de amido, registradas pelos diferentes resultados calculados a partir das curvas TGA e DTA. A amostra (3) teve as mudanças mais significativas na degradação com o 3ª evento exotérmico com temperaturas acima de 330 °C.
Resumo:
Starch is the main polysaccharide found in cereals, composed by amylose and amylopectin. Corn is the principal source of starches worldwide. Starches treatment, through physical, chemical and/or biological methods, can improve the applications range. Acid modification in alcoholic solution promotes minimally degradation in the granule. Ball mill is one physical method poorly explored. The aim was to treat the starches using HCl 0.5 mol L-1 for 1 hour in 100 ml of aqueous, ethanol or methanol solutions with subsequent ball milling processes. One sample was selected as native sample. The four others, one native sample and three acid modified samples, were treated by physical process with the oscillating ball mill. The DTG-60H equipment was used for the TG and DTA analysis. The TG curves showed three mass losses related to dehydration, decomposition and oxidation. The native sample without physical modification showed major resistance to total degradation. This occurs because the physical modification cleaves hydrogen bonds, leaving a weakened granule. The TGDTA results showed that the mass loss in the 2nd event was minor in the hydrolyzed samples compared with native samples. The acid modification can provide starch higher resistance to degradation up to 340 °C. These results showed that chemical and physical treatment changed the thermal behaviors of the starches.
Resumo:
This work presents the experimental development of a novel heat treatment for a high performance Laser Powder Bed Fusion Ti6Al4V alloy. Additive manufacturing production processes for titanium alloys are particularly of interest in cutting-edge engineering fields, however, high frequency laser induced thermal cycles generate a brittle as built microstructure. For this reason, heat treatments compliant with near net shape components are needed before their homologation and usage. The experimental campaign focused on the development of a multi-step heat treatment leading to a bilamellar microstructure. In fact, according to literature, such a microstructure should be promising in terms of mechanical properties both under static and cyclic loads. The heat treatment development has asked for the preliminary analyses of samples annealed and aged in laboratory, implementing several cycles, differing for what concerns temperatures, times and cooling rates. Such a characterization has been carried out through optical and electron microscopy analyses, image analyses, hardness and tensile tests. As a result, the most suitable thermal cycle has been selected and performed using industrial equipment on mini bending fatigue samples with different surface conditions. The same tests have been performed on a batch of traditionally treated samples, to provide with a comparison. This master thesis activity has finally led to the definition of a heat treatment resulting into a bilamellar microstructure, promising in terms of fatigue performances with respect to the traditionally treated alloy ones. The industrial implementation of such a heat treatment will require further improvements, particularly for what concerns the post annealing water quench, in order to prevent any surface alteration potentially responsible for the fatigue performances drop. Further development of the research may also include push-pull fatigue tests, crack grow propagation and residual stresses analyses.
Resumo:
Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.