976 resultados para Thermal Simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction and Building Materials 49 (2013), 315-327

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Masters Thesis, presented as part of the requirements for the award of a Research Masters Degree in Economics from NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High reflective paints (cool paints) are used on flat roofs to reduce heat gains from the incidence of solar radiation and thus improve the thermal comfort and energy efficiency of buildings, especially in summer periods. Given the application potential of these paints on vertical surfaces, a research study has been developed to evaluate the thermal performance of reflective paints on walls under real exposure conditions. Accordingly, different reflective paints have been applied as the final coating of an ETICS type solution, on the facades of a full scale experimental cell built at LNEC campus. For being applied in an ETICS system a paint has to fulfill several requirements, whether aesthetic or functional (such as the adhesion between the coating layers or the durability of the insulation), essential for its efficient performance. Since this construction coating system is subject to a prolonged sun exposure, various problems may arise, such as paint degradation or deterioration of the thermal insulation properties, particularly when dark colors are applied. To evaluate the thermal performance of the chosen paints, the method of non-destructive analysis by Infrared Thermography was used. Thermography allows knowing the temperature distribution of facades by measuring the radiation emitted by their surfaces. To complement the thermographic diagnosis, thermocouples were placed between the insulation and the paint system of the experimental cell. Additional laboratory tests allowed the characterization of the optical properties (reflectance and emittance) of the different reflective paints used in this study. The comparative analysis of the thermal performance of reflective and conventional paints revealed that the reflective paint allows a reduction of the facade surface temperature, reducing the risk of loss of insulating properties of the ETICS system and thus ensuring its longevity and functionality. The color of the paint used affects, naturally, the reflective ability of the surface and may have an important role in energy balance of the building. This paper also showed the potential of infrared thermography in the evaluation of the thermal performance of reflective paints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing parking simulations, as most simulations, are intended to gain insights of a system or to make predictions. The knowledge they have provided has built up over the years, and several research works have devised detailed parking system models. This thesis work describes the use of an agent-based parking simulation in the context of a bigger parking system development. It focuses more on flexibility than on fidelity, showing the case where it is relevant for a parking simulation to consume dynamically changing GIS data from external, online sources and how to address this case. The simulation generates the parking occupancy information that sensing technologies should eventually produce and supplies it to the bigger parking system. It is built as a Java application based on the MASON toolkit and consumes GIS data from an ArcGis Server. The application context of the implemented parking simulation is a university campus with free, on-street parking places.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of wind energy resource for the development of deep offshore wind plants requires the use of every possible source of data and, in many cases, includes data gathered at meteorological stations installed at islands, islets or even oil platforms—all structures that interfere with, and change, the flow characteristics. This work aims to contribute to the evaluation of such changes in the flow by developing a correction methodology and applying it to the case of Berlenga island, Portugal. The study is performed using computational fluid dynamic simulations (CFD) validated by wind tunnel tests. In order to simulate the incoming offshore flow with CFD models a wind profile, unknown a priori, was established using observations from two coastal wind stations and a power law wind profile was fitted to the existing data (a=0.165). The results show that the resulting horizontal wind speed at 80 m above sea level is 16% lower than the wind speed at 80 m above the island for the dominant wind direction sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study of how heat is transported in non-steady-state conditions from a superconducting Rutherford cable to a bath of superfluid helium (He II). The same type of superconducting cable is used in the dipole magnets of the Large Hadron Collider (LHC). The dipole magnets of the LHC are immersed in a bath of He II at 1.9 K. At this temperature helium has an extremely high thermal conductivity. During operation, heat needs to be efficiently extracted from the dipole magnets to keep their superconducting state. The thermal stability of the magnets is crucial for the operation of the LHC, therefore it is necessary to understand how heat is transported from the superconducting cables to the He II bath. In He II the heat transfer can be described by the Landau regime or by the Gorter-Mellink regime, depending on the heat flux. In this thesis both measurements and numerical simulation have been performed to study the heat transfer in the two regimes. A temperature increase of 8 2 mK of the superconducting cables was successfully measured experimentally. A new numerical model that covers the two heat transfer regimes has been developed. The numerical model has been validated by comparison with existing experimental data. A comparison is made between the measurements and the numerical results obtained with the developed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of the present dissertation is the simulation of the response of fibre grout strengthened RC panels when subjected to blast effects using the Applied Element Method, in order to validate and verify its applicability. Therefore, four experimental models, three of which were strengthened with a cement-based grout, each reinforced by one type of steel reinforcement, were tested against blast effects. After the calibration of the experimental set-up, it was possible to obtain and compare the response to the blast effects of the model without strengthening (reference model), and a fibre grout strengthened RC panel (strengthened model). Afterwards, a numerical model of the reference model was created in the commercial software Extreme Loading for Structures, which is based on the Applied Element Method, and calibrated to the obtained experimental results, namely to the residual displacement obtained by the experimental monitoring system. With the calibration verified, it is possible to assume that the numerical model correctly predicts the response of fibre grout RC panels when subjected to blast effects. In order to verify this assumption, the strengthened model was modelled and subjected to the blast effects of the corresponding experimental set-up. The comparison between the residual and maximum displacements and the bottom surface’s cracking obtained in the experimental and the numerical tests yields a difference of 4 % for the maximum displacements of the reference model, and a difference of 4 and 10 % for the residual and maximum displacements of the strengthened model, respectively. Additionally, the cracking on the bottom surface of the models was similar in both methods. Therefore, one can conclude that the Applied ElementMethod can correctly predict and simulate the response of fibre grout strengthened RC panels when subjected to blast effects.