890 resultados para Theory and Algorithms
Resumo:
In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).
Resumo:
In this thesis we discuss a representation of quantum mechanics and quantum and statistical field theory based on a functional renormalization flow equation for the one-particle-irreducible average effective action, and we employ it to get information on some specific systems.
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.
Resumo:
In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.
Resumo:
General Relativity (GR) is one of the greatest scientific achievements of the 20th century along with quantum theory. Despite the elegance and the accordance with experimental tests, these two theories appear to be utterly incompatible at fundamental level. Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails to describe Nature at small radii, because nothing prevents quantum mechanics from affecting the high curvature zone, and because classical GR becomes ill-defined at r = 0 anyway. Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce” and explosion, thus resolving the central singularity. This scenario, called Black Hole Fireworks, has been proposed in a semiclassical framework. The purpose of this thesis is twofold: - Compute the bouncing time by means of a pure quantum computation based on Loop Quantum Gravity; - Extend the known theory to a more realistic scenario, in which the rotation is taken into account by means of the Newman-Janis Algorithm.
Resumo:
Objective: Significant others are central to patients' experience and management of their cancer illness. Building on our validation of the Distress Thermometer (DT) for family members, this investigation examines individual and collective distress in a sample of cancer patients and their matched partners, accounting for the aspects of gender and role. Method: Questionnaires including the DT were completed by a heterogeneous sample of 224 couples taking part in a multisite study. Results: Our investigation showed that male patients (34.2%), female patients (31.9%), and male partners (29.1%) exhibited very similar levels of distress, while female partners (50.5%) exhibited much higher levels of distress according to the DT. At the dyad level just over half the total sample contained at least one individual reporting significant levels of distress. Among dyads with at least one distressed person, the proportion of dyads where both individuals reported distress was greatest (23.6%). Gender and role analyses revealed that males and females were not equally distributed among the four categories of dyads (i.e. dyads with no distress; dyads where solely the patient or dyads where solely the partner is distressed; dyads where both are distressed). Conclusion: A remarkable number of dyads reported distress in one or both partners. Diverse patterns of distress within dyads suggest varying risks of psychosocial strain. Screening patients' partners in addition to patients themselves may enable earlier identification of risk settings. The support offered to either member of such dyads should account for their role- and gender-specific needs. Copyright © 2010 John Wiley ; Sons, Ltd.
Resumo:
Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.
Resumo:
Let O-2n be a symplectic toric orbifold with a fixed T-n-action and with a tonic Kahler metric g. In [10] we explored whether, when O is a manifold, the equivariant spectrum of the Laplace Delta(g) operator on C-infinity(O) determines O up to symplectomorphism. In the setting of tonic orbifolds we shmilicantly improve upon our previous results and show that a generic tone orbifold is determined by its equivariant spectrum, up to two possibilities. This involves developing the asymptotic expansion of the heat trace on an orbifold in the presence of an isometry. We also show that the equivariant spectrum determines whether the toric Kahler metric has constant scalar curvature. (C) 2012 Elsevier Inc. All rights reserved.