698 resultados para Thaliana


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Arabidopsis thaliana, trichome cells are specialized unicellular structures with uncertain functions. Based on earlier observations that one of the genes involved in cysteine biosynthesis (Atcys-3A) is highly expressed in trichomes, we have extended our studies in trichome cells to determine their capacity for glutathione (GSH) biosynthesis. First, we have analyzed by in situ hybridization the tissue-specific expression of the genes Atcys-3A and sat5, which encode O-acetylserine(thio)lyase (OASTL) and serine acetyltransferase (SAT), respectively, as well as gsh1 and gsh2, which encode γ-glutamylcysteine synthetase and glutathione synthetase, respectively. The four genes are highly expressed in leaf trichomes of Arabidopsis, and their mRNA accumulate to high levels. Second, we have directly measured cytoplasmic GSH concentration in intact cells by laser-scanning microscopy after labeling with monochlorobimane as a GSH-specific probe. From these measurements, cytosolic GSH concentrations of 238 ± 25, 80 ± 2, and 144 ± 19 μM were estimated for trichome, basement, and epidermal cells, respectively. Taking into account the volume of the cells measured using stereological techniques, the trichomes have a total GSH content more than 300-fold higher than the basement and epidermal cells. Third, after NaCl treatment, GSH biosynthesis is markedly decreased in trichomes. Atcys-3A, sat5, gsh1, and gsh2 mRNA levels show a decrease in transcript abundance, and [GSH]cyt is reduced to 47 ± 5 μM. These results suggest the important physiological significance of trichome cells related to GSH biosynthesis and their possible role as a sink during detoxification processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Host-encoded factors play an important role in virus multiplication, acting in concert with virus-encoded factors. However, information regarding the host factors involved in this process is limited. Here we report the map-based cloning of an Arabidopsis thaliana gene, TOM1, which is necessary for the efficient multiplication of tobamoviruses, positive-strand RNA viruses infecting a wide variety of plants. The TOM1 mRNA is suggested to encode a 291-aa polypeptide that is predicted to be a multipass transmembrane protein. The Sos recruitment assay supported the hypothesis that TOM1 is associated with membranes, and in addition, that TOM1 interacts with the helicase domain of tobamovirus-encoded replication proteins. Taken into account that the tobamovirus replication complex is associated with membranes, we propose that TOM1 participates in the in vivo formation of the replication complex by serving as a membrane anchor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The circadian clock-associated 1 (CCA1) gene encodes a Myb-related transcription factor that has been shown to be involved in the phytochrome regulation of Lhcb1*3 gene expression and in the function of the circadian oscillator in Arabidopsis thaliana. By using a yeast interaction screen to identify proteins that interact with CCA1, we have isolated a cDNA clone encoding a regulatory (β) subunit of the protein kinase CK2 and have designated it as CKB3. CKB3 is the only reported example of a third β-subunit of CK2 found in any organism. CKB3 interacts specifically with CCA1 both in a yeast two-hybrid system and in an in vitro interaction assay. Other subunits of CK2 also show an interaction with CCA1 in vitro. CK2 β-subunits stimulate binding of CCA1 to the CCA1 binding site on the Lhcb1*3 gene promoter, and recombinant CK2 is able to phosphorylate CCA1 in vitro. Furthermore, Arabidopsis plant extracts contain a CK2-like activity that affects the formation of a DNA–protein complex containing CCA1. These results suggest that CK2 can modulate CCA1 activity both by direct interaction and by phosphorylation of the CCA1 protein and that CK2 may play a role in the function of CCA1 in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant disease resistance (R) genes confer race-specific resistance to pathogens and are genetically defined on the basis of intra-specific functional polymorphism. Little is known about the evolutionary mechanisms that generate this polymorphism. Most R loci examined to date contain alternate alleles and/or linked homologs even in disease-susceptible plant genotypes. In contrast, the resistance to Pseudomonas syringae pathovar maculicola (RPM1) bacterial resistance gene is completely absent (rpm1-null) in 5/5 Arabidopsis thaliana accessions that lack RPM1 function. The rpm1-null locus contains a 98-bp segment of unknown origin in place of the RPM1 gene. We undertook comparative mapping of RPM1 and flanking genes in Brassica napus to determine the ancestral state of the RPM1 locus. We cloned two B. napus RPM1 homologs encoding hypothetical proteins with ≈81% amino acid identity to Arabidopsis RPM1. Collinearity of genes flanking RPM1 is conserved between B. napus and Arabidopsis. Surprisingly, we found four additional B. napus loci in which the flanking marker synteny is maintained but RPM1 is absent. These B. napus rpm1-null loci have no detectable nucleotide similarity to the Arabidopsis rpm1-null allele. We conclude that RPM1 evolved before the divergence of the Brassicaceae and has been deleted independently in the Brassica and Arabidopsis lineages. These results suggest that functional polymorphism at R gene loci can arise from gene deletions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Limitation of water loss and control of gas exchange is accomplished in plant leaves via stomatal guard cells. Stomata open in response to light when an increase in guard cell turgor is triggered by ions and water influx across the plasma membrane. Recent evidence demonstrating the existence of ATP-binding cassette proteins in plants led us to analyze the effect of compounds known for their ability to modulate ATP-sensitive potassium channels (K-ATP) in animal cells. By using epidermal strip bioassays and whole-cell patch-clamp experiments with Vicia faba guard cell protoplasts, we describe a pharmacological profile that is specific for the outward K+ channel and very similar to the one described for ATP-sensitive potassium channels in mammalian cells. Tolbutamide and glibenclamide induced stomatal opening in bioassays and in patch-clamp experiments, a specific inhibition of the outward K+ channel by these compounds was observed. Conversely, application of potassium channel openers such as cromakalim or RP49356 triggered stomatal closure. An apparent competition between sulfonylureas and potassium channel openers occurred in bioassays, and outward potassium currents, previously inhibited by glibenclamide, were partially recovered after application of cromakalim. By using an expressed sequence tag clone from an Arabidopsis thaliana homologue of the sulfonylurea receptor, a 7-kb transcript was detected by Northern blot analysis in guard cells and other tissues. Beside the molecular evidence recently obtained for the expression of ATP-binding cassette protein transcripts in plants, these results give pharmacological support to the presence of a sulfonylurea-receptor-like protein in the guard-cell plasma membrane tightly involved in the outward potassium channel regulation during stomatal movements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified and characterized an Arabidopsis thaliana rad50 mutant plant containing a T-DNA insertion in the AtRAD50 gene and showing both meiotic and DNA repair defects. We report here that rad50/rad50 mutant cells show a progressive shortening of telomeric DNA relative to heterozygous rad50/RAD50 controls and that the mutant cell population rapidly enters a crisis, with the majority of the cells dying. Surviving rad50 mutant cells have longer telomeres than wild-type cells, indicating the existence in plants of an alternative RAD50-independent mechanism for telomere maintenance. These results report the role of a protein essential for double-strand break repair in telomere maintenance in higher eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GeneSplicer is a new, flexible system for detecting splice sites in the genomic DNA of various eukaryotes. The system has been tested successfully using DNA from two reference organisms: the model plant Arabidopsis thaliana and human. It was compared to six programs representing the leading splice site detectors for each of these species: NetPlantGene, NetGene2, HSPL, NNSplice, GENIO and SpliceView. In each case GeneSplicer performed comparably to the best alternative, in terms of both accuracy and computational efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PlantsP database is a curated database that combines information derived from sequences with experimental functional genomics information. PlantsP focuses on plant protein kinases and protein phosphatases. The database will specifically provide a resource for information on a collection of T-DNA insertion mutants (knockouts) in each protein kinase and phosphatase in Arabidopsis thaliana. PlantsP also provides a curated view of each protein that includes a comprehensive annotation of functionally related sequence motifs, sequence family definitions, alignments and phylogenetic trees, and descriptive information drawn directly from the literature. PlantsP is available at http://PlantsP.sdsc.edu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is generally accepted that K+ uptake into guard cells via inward-rectifying K+ channels is required for stomatal opening. To test whether the guard cell K+ channel KAT1 is essential for stomatal opening, a knockout mutant, KAT1∷En-1, was isolated from an En-1 mutagenized Arabidopsis thaliana population. Stomatal action and K+ uptake, however, were not impaired in KAT1-deficient plants. Reverse transcription–PCR experiments with isolated guard cell protoplasts showed that in addition to KAT1, the K+ channels AKT1, AKT2/3, AtKC1, and KAT2 were expressed in this cell type. In impalement measurements, intact guard cells exhibited inward-rectifying K+ currents across the plasma membrane of both wild-type and KAT1∷En-1 plants. This study demonstrates that multiple K+ channel transcripts exist in guard cells and that KAT1 is not essential for stomatal action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p300 and CBP participate as transcriptional coregulators in the execution of a wide spectrum of cellular gene expression programs controlling cell differentiation, growth and homeostasis. Both proteins act together with sequence-specific transcription factors to modify chromatin structure of target genes via their intrinsic acetyltransferase activity directed towards core histones and some transcription factors. So far, p300-related proteins have been described in animals ranging from Drosophila and Caenorhabditis elegans to humans. In this report, we describe p300/CBP-like polypeptides in the plant Arabidopsis thaliana. Interestingly, homology between animal and plant p300/CBP is largely restricted to a C-terminal segment, about 600 amino acids in length, which encompasses acetyltransferase and E1A-binding domains. We have examined whether this conservation in sequence is paralleled by a conservation in function. The same amino acid residues critical for acetyltransferase activity in human p300 are also critical for the function of one of the plant orthologs. Remarkably, plant proteins bind to the adenovirus E1A protein in a manner recapitulating the binding specificity of mammalian p300/CBP. The striking conservation of an extended segment of p300/CBP suggests that it may constitute a functional entity fulfilling functions that may be essential for all metazoan organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant chloroplasts originated from an endosymbiotic event by which an ancestor of contemporary cyanobacteria was engulfed by an early eukaryotic cell and then transformed into an organelle. Oxygenic photosynthesis is the specific feature of cyanobacteria and chloroplasts, and the photosynthetic machinery resides in an internal membrane system, the thylakoids. The origin and genesis of thylakoid membranes, which are essential for oxygenic photosynthesis, are still an enigma. Vipp1 (vesicle-inducing protein in plastids 1) is a protein located in both the inner envelope and the thylakoids of Pisum sativum and Arabidopsis thaliana. In Arabidopsis disruption of the VIPP1 gene severely affects the plant's ability to form properly structured thylakoids and as a consequence to carry out photosynthesis. In contrast, Vipp1 in Synechocystis appears to be located exclusively in the plasma membrane. Yet, as in higher plants, disruption of the VIPP1 gene locus leads to the complete loss of thylakoid formation. So far VIPP1 genes are found only in organisms carrying out oxygenic photosynthesis. They share sequence homology with a subunit encoded by the bacterial phage shock operon (PspA) but differ from PspA by a C-terminal extension of about 30 amino acids. In two cyanobacteria, Synechocystis and Anabaena, both a VIPP1 and a pspA gene are present, and phylogenetic analysis indicates that VIPP1 originated from a gene duplication of the latter and thereafter acquired its new function. It also appears that the C-terminal extension that discriminates VIPP1 proteins from PspA is important for its function in thylakoid formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The poly(A)-binding protein (PABP) recognizes the 3′ mRNA poly(A) tail and plays an essential role in eukaryotic translation initiation and mRNA stabilization/degradation. PABP is a modular protein, with four N-terminal RNA-binding domains and an extensive C terminus. The C-terminal region of PABP is essential for normal growth in yeast and has been implicated in mediating PABP homo-oligomerization and protein–protein interactions. A small, proteolytically stable, highly conserved domain has been identified within this C-terminal segment. Remarkably, this domain is also present in the hyperplastic discs protein (HYD) family of ubiquitin ligases. To better understand the function of this conserved region, an x-ray structure of the PABP-like segment of the human HYD protein has been determined at 1.04-Å resolution. The conserved domain adopts a novel fold resembling a right-handed supercoil of four α-helices. Sequence profile searches and comparative protein structure modeling identified a small ORF from the Arabidopsis thaliana genome that encodes a structurally similar but distantly related PABP/HYD domain. Phylogenetic analysis of the experimentally determined (HYD) and homology modeled (PABP) protein surfaces revealed a conserved feature that may be responsible for binding to a PABP interacting protein, Paip1, and other shared interaction partners.