836 resultados para Text retrieval
Resumo:
Background: Problems with lexical retrieval are common across all types of aphasia but certain word classes are thought to be more vulnerable in some aphasia types. Traditionally, verb retrieval problems have been considered characteristic of non-fluent aphasias but there is growing evidence that verb retrieval problems are also found in fluent aphasia. As verbs are retrieved from the mental lexicon with syntactic as well as phonological and semantic information, it is speculated that an improvement in verb retrieval should enhance communicative abilities in this population as in others. We report on an investigation into the effectiveness of verb treatment for three individuals with fluent aphasia. Methods & Procedures: Multiple pre-treatment baselines were established over 3 months in order to monitor language change before treatment. The three participants then received twice-weekly verb treatment over approximately 4 months. All pre-treatment assessments were administered immediately after treatment and 3 months post-treatment. Outcome & Results: Scores fluctuated in the pre-treatment period. Following treatment, there was a significant improvement in verb retrieval for two of the three participants on the treated items. The increase in scores for the third participant was statistically nonsignificant but post-treatment scores moved from below the normal range to within the normal range. All participants were significantly quicker in the verb retrieval task following treatment. There was an increase in well-formed sentences in the sentence construction test and in some samples of connected speech. Conclusions: Repeated systematic treatment can produce a significant improvement in verb retrieval of practised items and generalise to unpractised items for some participants. An increase in well-formed sentences is seen for some speakers. The theoretical and clinical implications of the results are discussed.
Resumo:
The aim of this study was to investigate the widely held, but largely untested, view that implicit memory (repetition priming) reflects an automatic form of retrieval. Specifically, in Experiment 1 we explored whether a secondary task (syllable monitoring), performed during retrieval, would disrupt performance on explicit (cued recall) and implicit (stem completion) memory tasks equally. Surprisingly, despite substantial memory and secondary costs to cued recall when performed with a syllable-monitoring task, the same manipulation had no effect on stem completion priming or on secondary task performance. In Experiment 2 we demonstrated that even when using a particularly demanding version of the stem completion task that incurred secondary task costs, the corresponding disruption to implicit memory performance was minimal. Collectively, the results are consistent with the view that implicit memory retrieval requires little or no processing capacity and is not seemingly susceptible to the effects of dividing attention at retrieval.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.
Resumo:
A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, data from spaceborne radar, lidar and infrared radiometers on the “A-Train” of satellites are combined in a variational algorithm to retrieve ice cloud properties. The method allows a seamless retrieval between regions where both radar and lidar are sensitive to the regions where one detects the cloud. We first implement a cloud phase identification method, including identification of supercooled water layers using the lidar signal and temperature to discriminate ice from liquid. We also include rigorous calculation of errors assigned in the variational scheme. We estimate the impact of the microphysical assumptions on the algorithm when radiances are not assimilated by evaluating the impact of the change in the area-diameter and the density-diameter relationships in the retrieval of cloud properties. We show that changes to these assumptions affect the radar-only and lidar-only retrieval more than the radar-lidar retrieval, although the lidar-only extinction retrieval is only weakly affected. We also show that making use of the molecular lidar signal beyond the cloud as a constraint on optical depth, when ice clouds are sufficiently thin to allow the lidar signal to penetrate them entirely, improves the retrieved extinction. When infrared radiances are available, they provide an extra constraint and allow the extinction-to-backscatter ratio to vary linearly with height instead of being constant, which improves the vertical distribution of retrieved cloud properties.
Resumo:
A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.
Resumo:
The atmospheric electrical Potential Gradient (PG) arises from global thunderstorm activity, but surface measurements of the atmospheric Potential Gradient (PG) are influenced by global thunderstorms and local aerosol concentration changes. The local aerosol change can be monitored independently, and in some cases the concentration changes are closely related to PG changes. For these circumstances, a general theory to remove the local aerosol influence on PG measurements has been developed. Continuous measurements of PG and aerosol mass concentration were made during 24–31 Dec, 2005 within an urban environment at Reading, UK. The average diurnal variation of PG showed a double diurnal cycle, with maxima in the early morning and evening hours. The aerosol concentration has similar double maxima. Removing the aerosol using from the PG and aerosol correlation returns a single diurnal cycle, suggestive of the more global PG diurnal cycle.
Resumo:
In a previous paper, we discovered a surprising spectrally-invariant relationship in shortwave spectrometer observations taken by the Atmospheric Radiation Measurement (ARM) program. The relationship suggests that the shortwave spectrum near cloud edges can be determined by a linear combination of zenith radiance spectra of the cloudy and clear regions. Here, using radiative transfer simulations, we study the sensitivity of this relationship to the properties of aerosols and clouds, to the underlying surface type, and to the finite field-of-view (FOV) of the spectrometer. Overall, the relationship is mostly sensitive to cloud properties and has little sensitivity to other factors. At visible wavelengths, the relationship primarily depends on cloud optical depth regardless of cloud phase function, thermodynamic phase and drop size. At water-absorbing wavelengths, the slope of the relationship depends primarily on cloud optical depth; the intercept, by contrast, depends primarily on cloud absorbing and scattering properties, suggesting a new retrieval method for cloud drop effective radius. These results suggest that the spectrally-invariant relationship can be used to infer cloud properties near cloud edges even with insufficient or no knowledge about spectral surface albedo and aerosol properties.
Resumo:
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Resumo:
In order to explore the impact of a degraded semantic system on the structure of language production, we analysed transcripts from autobiographical memory interviews to identify naturally-occurring speech errors by eight patients with semantic dementia (SD) and eight age-matched normal speakers. Relative to controls, patients were significantly more likely to (a) substitute and omit open class words, (b) substitute (but not omit) closed class words, (c) substitute incorrect complex morphological forms and (d) produce semantically and/or syntactically anomalous sentences. Phonological errors were scarce in both groups. The study confirms previous evidence of SD patients’ problems with open class content words which are replaced by higher frequency, less specific terms. It presents the first evidence that SD patients have problems with closed class items and make syntactic as well as semantic speech errors, although these grammatical abnormalities are mostly subtle rather than gross. The results can be explained by the semantic deficit which disrupts the representation of a pre-verbal message, lexical retrieval and the early stages of grammatical encoding.