576 resultados para Teorema de Frobenius
Resumo:
We study congruences in the coefficients of modular and other automorphic forms. Ramanujan famously found congruences for the partition function like p(5n+4) = 0 mod 5. For a wide class of modular forms, we classify the primes for which there can be analogous congruences in the coefficients of the Fourier expansion. We have several applications. We describe the Ramanujan congruences in the counting functions for overparitions, overpartition pairs, crank differences, and Andrews' two-coloured generalized Frobenius partitions. We also study Ramanujan congruences in the Fourier coefficients of certain ratios of Eisenstein series. We also determine the exact number of holomorphic modular forms with Ramanujan congruences when the weight is large enough. In a chapter based on joint work with Olav Richter, we study Ramanujan congruences in the coefficients of Jacobi forms and Siegel modular forms of degree two. Finally, the last chapter contains a completely unrelated result about harmonic weak Maass forms.
Resumo:
En este artículo exploramos una estrategia de desarrollo profesional de profesores de enseñanza básica que tienen a su cargo clases de matemáticas, basada en la profundización de conceptos teóricos y su utilización. El propósito fue identificar elementos del quehacer docente cuando los profesores en ejercicio reflexionan sobre la reproducibilidad de situaciones de enseñanza y aprendizaje, diseñadas por ellos y aplicadas en distintos escenarios. Estos escenarios son distintos grupos de alumnos entre 12 a 13 años en diferentes escuelas. El estudio toma como referente teórico la Teoría de Situaciones Didácticas, que da el soporte al constructo de reproducibilidad, la Teoría Antropológica de lo Didáctico y la conceptualización de reflexión. Es un estudio de caso en donde se realiza un seguimiento a cuatro docentes que diseñan situaciones de enseñanza y aprendizaje sobre el teorema de Pitágoras, en el marco de un curso para su desarrollo profesional. Metodológicamente se empleó el constructo Estudio de Clases para realizar la reflexión sobre los diseños de clases y su reproducibilidad. Los resultados develan que los docentes evolucionan en su reflexión y discusión sobre su quehacer en el aula, por lo cual mejoran las situaciones de enseñanza y aprendizaje y su gestión de clases. Además, se detecta que los profesores fijan ciertos elementos para poder aplicar sus clases o lecciones en distintos escenarios, y así obtener resultados similares.
Resumo:
The real-quaternionic indicator, also called the $\delta$ indicator, indicates if a self-conjugate representation is of real or quaternionic type. It is closely related to the Frobenius-Schur indicator, which we call the $\varepsilon$ indicator. The Frobenius-Schur indicator $\varepsilon(\pi)$ is known to be given by a particular value of the central character. We would like a similar result for the $\delta$ indicator. When $G$ is compact, $\delta(\pi)$ and $\varepsilon(\pi)$ coincide. In general, they are not necessarily the same. In this thesis, we will give a relation between the two indicators when $G$ is a real reductive algebraic group. This relation also leads to a formula for $\delta(\pi)$ in terms of the central character. For the second part, we consider the construction of the local Langlands correspondence of $GL(2,F)$ when $F$ is a non-Archimedean local field with odd residual characteristics. By re-examining the construction, we provide new proofs to some important properties of the correspondence. Namely, the construction is independent of the choice of additive character in the theta correspondence.
Resumo:
Este texto abarca temas como: superficies diferenciales, diferenciación e integración en superficies, formas fundamentales, Curvatura Gaussiana, teorema Egregio y teorema de Gauss-Bonnet. La colección de textos lecciones de matemáticas, iniciativa del departamento de Ciencias Básicas de la Universidad de Medellín (Medellín, Colombia) y su grupo de investigación SUMMA, incluye en cada número la exposición detallada de un tema matemático en particular, tratado con el rigor que muchas veces no es posible lograr en un curso regular de la disciplina. Las matemáticas incluyen diferentes áreas del saber matemático como: álgebra, trigonometría, cálculo, estadística y probabilidades, álgebra lineal, métodos lineales y numéricos, historia de las matemáticas, geometría, matemáticas puras y aplicadas, ecuaciones diferenciales y empelo de softwares matemáticos. Todas las carátulas de la colección vienen ilustradas, a manera de identificación, con diseños de la geometría fractal cuya fuente u origen se encuentra referenciada en las páginas interiores de los textos.
Resumo:
Este texto Elementos de Geometría comprende: Geometría Euclidiana y Geometría del Compás. La Geometría Euclidiana se basa en el uso de la regla (no graduada) y el compás, para la construcción de las figuras geométricas. La Geometría Euclidiana se divide, a su vez, en geometría plana y geometría del espacio; la geometría plana trata de las figuras geométricas cuyos puntos están todos situados en el mismo plano y la geometría del espacio del estudio de figuras tridimensionales. El texto aborda, además, el teorema de Gauss que trata de la condición necesaria y suficiente para que una circunferencia se pueda dividir en partes iguales, mediante el uso de la regla y el compás, y teoremas notables como: teorema de Menelaus, teorema de Ceva, teorema de Stewart y teorema de a Alembert. En la geometría del espacio se incluyó un estudio de los cinco poliedros regulares: tetraedro, exaedro, octaedro, icosaedro y dodecaedro. El libro contiene ejercicios al finalizar cada capítulo, en el orden:\' teoremas, lugares geométricos, máximos y mínimos, y problemas varios, con el fin de desarrollar en el estudiante su espíritu investigativo y creativo. Este texto, es una iniciativa de los profesores del Departamento de Ciencias Básicas de la Universidad de Medellín (Medellín - Colombia) y su grupo de investigación SUMMA, yes un programa del Proyecto Institucional Permanencia con Calidad, cuyo objetivo fundamental es disminuir los niveles de deserción y pérdida académica de los estudiantes.
Resumo:
La hoja de cálculo constituye un potente entorno para la experimentación en clase de estadística, comparable al laboratorio en la de ciencias experimentales. Entre sus múltiples aplicaciones se encuentra la de proporcionar un medio para la comprobación experimental de resultados teóricos. Para ilustrarlo, proponemos un modelo para verificar el teorema de Stein relativo a la estimación óptima de un conjunto de k > 2 medias. El carácter paradójico de este resultado lo convierte en un ejemplo ideal para este tipo de simulaciones.
Resumo:
[eus] Lan honen helburua analisi dimentsionala nola erabiltzen den modu sinplean azaltzea da. Lana hiru zatitan banatuta dago. Lehenengo atalean analisi dimentsionalaren oinarriak aurkezten dira,teorema garrantzitsuenak nola erabili eta problemak nola ebatzi deskribatuz. Bigarren zatian, jariakinen mekanika eta dinamikako problemetan askotan agertzen diren zenbaki adimentsional ezagunenak zerrendatzen dira, eta bakoitza zein kasutan den garrantzitsua azaltzen da. Bukatzeko, analisi dimentsionalaren aplikazio nagusia aztertzen da azken atalean: modelaketa.
Resumo:
Teoría de la probabilidad, contiene definiciones y terminología de frecuente uso en esta parte de las matemáticas; también se exponen distintos métodos de solución y las reglas esenciales del análisis combinatorio que proporcionan, en muchas ocasiones, una vía más cómoda en la solución de problemas; además se enuncia el Teorema de Bayes y su adjunto, de la probabilidad total. Todos los temas son ilustrados con ejemplos y problemas resueltos; al final hay una serie de ejercicios propuestos que el lector debe intentar resolver. La colección lecciones de matemáticas, iniciativa del departamento de ciencias básicas de la universidad de Medellín, a través de su grupo de investigación SUMMA, incluye en cada número la exposición detallada de un tema matemático, tratado con mayor profundidad que en un curso regular. Las temáticas incluyen: algebra, trigonometría, calculo, estadística y probabilidades, algebra lineal, métodos lineales y numéricos, historia de las matemáticas, geometría, matemáticas puras y aplicadas, ecuaciones diferenciales y empleo de distintos softwares para la enseñanza de las matemáticas.
Resumo:
El estudio de la teoría sobre de las cuádricas con Geometría Proyectiva, aplicando conceptos, definiciones, y teoremas fundamentales, los cuales nos llevan a comprender la importancia de su aplicación en las diferentes ramas de la matemática y sus representaciones gráficas. Es por ello que en este trabajo se trata de desarrollar temas que están enfocados a comprender las cuádricas con geometría proyectiva y su importancia. Se desarrollará la noción de proyección, donde se dan definiciones importantes sobre la proyección, así como una descripción de que sucede si se agregan los puntos ideales o puntos al infinito, y que estos sean los centros de proyección, además el enriquecimiento que aportan estos nuevos conceptos. Se desarrollarán los conceptos de coordenadas homogéneas, que es fundamental para la comprensión de los puntos ideales o puntos al infinito, que facilitarán el manejo algebraico en el estudio del espacio proyectivo, el cual también incluye puntos complejos, así como la representación del espacio en diferentes dimensiones, y cambio de estructura de coordenadas, subespacios, hiperplanos y dualidad. Los más importantes teoremas de la Geometría Euclidiana, desarrollado con la Geometría Proyectiva, que es el Teorema de Desargues, y algunos resultados importantes adicionales. También se hará una introducción a proyectividades, razón cruzada, y transformaciones lineales. Se refleja la riqueza que tienen las cuádricas aplicando los conceptos de la geometría proyectiva, así como sus diferentes representaciones. Es importante mencionar que en el pasado el ser humano se ha visto favorecido por tales representaciones, facilitando la comprensión de su entorno, aunque muchas veces no esté consciente de los aspectos matemáticos que están involucrados.
Resumo:
Neste artigo faz-se uma análise das características distributivas do processo Kaldor-Pasinetti, assumindo-se que o setor governamental incorre em persistentes déficits que podem ser financiados através de diferentes instrumentos, como a emissão de títulos e de moeda. Através dessa abordagem é possível estudar como a atividade governamental afeta a distribuição de renda entre capitalistas e trabalhadores e assim obter generalizações do Teorema de Cambridge em que versões anteriores como as de Steedman (1972), Pasinetti (1989), Dalziel (1991) e Faria (2000) surgem como casos particulares. _________________________________________________________________________________ ABSTRACT
Resumo:
lido nada de Milton Hatoum. Mas, emprestado por uma amiga, li Dois Irmãos e perguntei- me por que razão não tinha ouvido falar dele antes. Às vezes ando distraída e deixo passar várias informações literárias em revistas, jornais e rádio (televisão não tenho). Deve ter sido numa dessas alturas que o seu nome foi falado, até porque as notícias das suas vitórias de prémios literários foram difundidas no nosso país. Tendo passado por diversas profissões (arquiteto, professor de literatura, cronista), Milton Hatoum não é um desconhecido em Portugal e muito menos no Brasil. Por cá, a sua obra (quatro romances e um livro de contos) está publicada na Cotovia (Relato de um certo Oriente – 1999; Dois irmãos – 2000; Cinzas do norte – 2005 e os contos A cidade ilhada – 2009) e na Teorema (Órfãos do El Dourado – 2009). No Brasil, todos os romances foram premiados: três deles com o prestigiado prémio Jabuti de Literatura e um, Cinzas do norte, com o importante Prémio Portugal Telecom de Literatura. Dois irmãos é um livro pequeno, mas muito intenso. Depois de terminarmos a leitura ainda ficamos com as personagens e os seus dramas de vida na nossa memória. Passado em Manaus, acompanha a história da família de Zana e Halim, um casal de libaneses emigrados no Brasil. A ação acompanha décadas da família (os gémeos teriam nascido em 1925), principalmente do período que medeia a Segunda Guerra até à ditadura militar, pelo olhar de uma personagem secundária, que sabe de muitas destas histórias em segunda mão, através das conversas com diversas personagens, principalmente Halim e a índia Domingas que, vimos a saber, é sua mãe. Tudo nos é revelado aos poucos, como se o narrador (cujo nome, Nael, só sabemos quase no fim) nos fosse contando à medida que se vai lembrando, recuando e avançando no relato.
Resumo:
Este trabajo se enfoca en el estudio del control de sistemas Multi-Entrada Multi-Salida (MIMO) Lineales con Parámetros Variantes en el Tiempo (LPV). Los parámetros son medibles y permanecen dentro de cotas conocidas. El control por retroalimentación de salida garantiza estabilidad cuadrática (QS) y desempeño, mediante el Teorema de los vértices y el Lema de Cota Real (BRL). Se proponen condiciones para que el sistema retroalimentado sea convexo cuando se utilizan controladores estabilizantes en cada vértice. El controlador LPV resulta de la interpolación de estos controladores, y se estudia la relación entre la estabilidad y el desempeño del control de los vértices, y la estabilidad y desempeño del sistema LPV. Además, se da una forma explícita del parámetro libre de la Parametrización de Todos los Controladores Estabilizantes (PTCE) que resuelve un criterio de sensibilidad mezclada cuando se tiene un modelo de incertidumbre aditivo a la salida. Los resultados se aplican a un robot planar rotacional de dos grados de libertad, a un motor de CD y a un sistema de dos masas.
Resumo:
Este trabajo busca mostrar una forma general de encontrar arreglos de tres números naturales (tercias) que cumplen la relación de Pitágoras, es decir que la suma del cuadrado de los dos menores de como resultado el cuadrado del mayor, a través de un proceso mucho más general que los conocidos hasta ahora, llegando incluso a proponer unas fórmulas que, en función de dos parámetros permite encontrar dichos conjuntos de tres elementos, cuyos resultados se los presenta en unas tablas. Los resultados afirman la idea de que existe un infinito número de tercias que cumplen la relación de Pitágoras. Luego veremos cómo se puede usar estas tablas para construir relaciones donde la suma de los cuadrados de más de dos números es igual al cuadrado de otro.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, Programa de Mestrado Profissional em Matemática em Rede Nacional, 2016.
Resumo:
En el ámbito de las estructuras ordenadas, Ø. Ore introdujo en 1944 el concepto de conexión de Galois como un par de funciones antítonas entre dos conjuntos parcialmente ordenados, generalizando así la teoría de polaridades entre retículos completos. Este concepto supone una generalización de la correspondencia subgrupo-subcuerpo que se describe en el clásico Teorema Fundamental de la Teoría de Galois, de ahí el origen del término. Años más tarde, J. Schmidt mantuvo la terminología de conexión de Galois, pero cambió las funciones antítonas por funciones isótonas, lo cual favoreció la aplicabilidad de este concepto a Computación. El término adjunción fue introducido en 1958 por D. M. Kan. Originalmente fueron definidas en un contexto categórico y tal vez debido a esto, pueden encontrarse gran cantidad de ejemplos de adjunciones en varias áreas de investigación, que van desde las más teóricas a las más aplicadas. En 1965, Lotfi Zadeh introduce la Teoría de Conjuntos Difusos. En su trabajo se aborda definitivamente el problema del modelado matemático de la ambigüedad, con la definición de conjunto difuso X en un universo U como una aplicación X: U→ [0,1] que asocia a cada elemento u del conjunto U un valor del intervalo real [0,1] y donde X(u) representa el grado de pertenencia de u al conjunto difuso X. El término conexión de Galois difusa fue introducido por R. Belohlávek como un par de aplicaciones definidas entre los conjuntos de conjuntos difusos definidos sobre dos universos. Desde entonces, en el ámbito de la lógica difusa, se pueden encontrar numerosos artículos en los cuales se estudian las conexiones de Galois difusas desde un punto de vista algebraico y abstracto. El objetivo principal de este trabajo es estudiar y caracterizar, a partir de una aplicación f: A→ B desde un conjunto A dotado con una determinada estructura hasta un conjunto B no necesariamente dotado de estructura, las situaciones en las cuales se pueda definir una estructura en B similar a la de A, de forma que además se pueda construir una aplicación g: B→ A tal que el par (f,g) sea una adjunción (conexión de Galois isótona). Se considera el conjunto A dotado con un orden parcial y se realiza la descomposición canónica de la función f a través del conjunto cociente de A con respecto a la relación núcleo. Partiendo del problema inicial de deducir las condiciones necesarias y suficientes para la existencia de un orden parcial en B y para la definición de un adjunto por la derecha de f, con esta descomposición canónica se pretende dividir la cuestión en tres problemas más simples, a saber, la construcción de un orden en el codominio y un adjunto por la derecha para cada una de las aplicaciones que forman parte de la citada descomposición. Esto resuelve la cuestión planteada para el caso de funciones que son sobreyectivas. Para el caso general, es necesario analizar previamente cómo extender una relación de preorden definida sobre un subconjunto de un conjunto dado a dicho conjunto, así como la definición de un adjunto por la derecha para la inclusión natural del subconjunto dentro del conjunto. Se continua la investigación considerando el conjunto A dotado con un preorden, en este caso la ausencia de la propiedad antisimétrica hace necesario utilizar la denominada relación p-núcleo, que es el cierre transitivo de la unión de la relación núcleo y la relación de equivalencia núcleo simétrico. Asimismo, el hecho de que no se tenga unicidad para el máximo o el mínimo de un subconjunto, conduce a trabajar con relaciones definidas en el conjunto de partes de un conjunto (concretamente, con el preorden de Hoare). Todo ello hace aumentar la dificultad en la búsqueda de las condiciones necesarias y suficientes para la existencia de una relación de preorden en el codominio y la existencia de un adjunto por la derecha. Se finaliza esta sección con el análisis de la unicidad del adjunto por la derecha y del orden parcial (preorden) definido sobre el codominio. Después del estudio anterior, se introducen los denominados operadores y sistemas de ≈-cierre en conjuntos preordenados y se analiza la relación existente entre ambos (que deja de ser biunívoca, como sucede en el caso de órdenes parciales). Se trabaja con la noción de compatibilidad respecto a una relación de equivalencia y se caracteriza la construcción de adjunciones entre conjuntos preordenados en términos de la existencia de un sistema de ≈-cierre compatible con la relación núcleo. En una segunda parte de la tesis, se aportan las definiciones de las nociones de adjunción difusa, co-adjunción difusa y conexiones de Galois difusas por la derecha y por la izquierda entre conjuntos con preórdenes difusos. Además se presentan las distintas caracterizaciones de los conceptos anteriormente señalados, así como las relaciones entre ellos. Se aborda la construcción de adjunciones entre conjuntos con órdenes difusos, utilizando de nuevo la relación núcleo, en su versión difusa, y la descomposición canónica de la función de partida respecto a ella. El teorema principal de esta sección recoge una caracterización para la definición de una relación difusa de orden sobre el codominio B y un adjunto por la derecha para f:(A, ρA) → B donde (A, ρA) es un conjunto con un orden difuso. El estudio del problema anterior entre conjuntos con preórdenes difusos, hace necesario trabajar con la relación difusa denominada p-núcleo. También es preciso definir un preorden difuso en el conjunto de partes de un conjunto para describir las condiciones bajo las que es posible la construcción de una adjunción. Se finaliza proponiendo la definición de sistema de cierre en un conjunto con un preorden difuso y algunas caracterizaciones más manejables. También se trabaja con los operadores de cierre definidos en un conjunto con un preorden difuso y se analiza la relación con los sistemas de cierre. Todo ello encaminado a caracterizar la construcción de un adjunto por la derecha y un preorden difuso sobre el codominio B de una de una aplicación f:(A, ρA) → B, donde ρA es un preorden difuso sobre A.