922 resultados para Tension Leg Platform (Tlp)
Resumo:
The aim of this study is to investigate flow-induced dynamic surface tension effects, similar to the well-known Marangoni phenomena, but solely generated by the nanoscale topography of the substrates. The flow-induced surface tension effects are examined on the basis of a sharp interface theory. It is demonstrated how nanoscale objects placed at the boundary of the flow domain result in the generation of substantial surface forces acting on the bulk flow.
Resumo:
The major component of skeletal muscle is the myofibre. Genetic intervention inducing over-enlargement of myofibres beyond a certain threshold through acellular growth causes a reduction in the specific tension generating capacity of the muscle. However the physiological parameters of a genetic model that harbours reduced skeletal muscle mass have yet to be analysed. Genetic deletion of Meox2 in mice leads to reduced limb muscle size and causes some patterning defects. The loss of Meox2 is not embryonically lethal and a small percentage of animals survive to adulthood making it an excellent model with which to investigate how skeletal muscle responds to reductions in mass. In this study we have performed a detailed analysis of both late foetal and adult muscle development in the absence of Meox2. In the adult, we show that the loss of Meox2 results in smaller limb muscles that harbour reduced numbers of myofibres. However, these fibres are enlarged. These myofibres display a molecular and metabolic fibre type switch towards a more oxidative phenotype that is induced through abnormalities in foetal fibre formation. In spite of these changes, the muscle from Meox2 mutant mice is able to generate increased levels of specific tension compared to that of the wild type.
Resumo:
This paper describes the design, implementation and testing of a high speed controlled stereo “head/eye” platform which facilitates the rapid redirection of gaze in response to visual input. It details the mechanical device, which is based around geared DC motors, and describes hardware aspects of the controller and vision system, which are implemented on a reconfigurable network of general purpose parallel processors. The servo-controller is described in detail and higher level gaze and vision constructs outlined. The paper gives performance figures gained both from mechanical tests on the platform alone, and from closed loop tests on the entire system using visual feedback from a feature detector.
Resumo:
The authors demonstrate four real-time reactive responses to movement in everyday scenes using an active head/eye platform. They first describe the design and realization of a high-bandwidth four-degree-of-freedom head/eye platform and visual feedback loop for the exploration of motion processing within active vision. The vision system divides processing into two scales and two broad functions. At a coarse, quasi-peripheral scale, detection and segmentation of new motion occurs across the whole image, and at fine scale, tracking of already detected motion takes place within a foveal region. Several simple coarse scale motion sensors which run concurrently at 25 Hz with latencies around 100 ms are detailed. The use of these sensors are discussed to drive the following real-time responses: (1) head/eye saccades to moving regions of interest; (2) a panic response to looming motion; (3) an opto-kinetic response to continuous motion across the image and (4) smooth pursuit of a moving target using motion alone.