958 resultados para Tennessee Valley Authority.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indus Valley Civilization (IVC) was one of the first great civilizations in prehistory. This bronze age civilization flourished from the end of the fourth millennium BC. It disintegrated during the second millennium BC; despite much research effort, this decline is not well understood. Less research has been devoted to the emergence of the IVC, which shows continuous cultural precursors since at least the seventh millennium BC. To understand the decline, we believe it is necessary to investigate the rise of the IVC, i.e., the establishment of agriculture and livestock, dense populations and technological developments 7000-3000 BC. Although much archaeologically typed information is available, our capability to investigate the system is hindered by poorly resolved chronology, and by a lack of field work in the intermediate areas between the Indus valley and Mesopotamia. We thus employ a complementary numerical simulation to develop a consistent picture of technology, agropastoralism and population developments in the IVC domain. Results from this Global Land Use and technological Evolution Simulator show that there is (1) fair agreement between the simulated timing of the agricultural transition and radiocarbon dates from early agricultural sites, but the transition is simulated first in India then Pakistan; (2) an independent agropas- toralism developing on the Indian subcontinent; and (3) a positive relationship between archeological artifact richness and simulated population density which remains to be quantified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of many arctic wetlands is associated with the occurrence of polygon-patterned permafrost. Existing scenarios to describe and explain surface landforms in arctic wetlands (low-center and high-center polygons and polygon ponds) invoke competing hypotheses: a cyclic succession (the thaw-lake hypothesis) or a linear succession (terrestrialization). Both hypotheses infer the predictable development of polygon-patterned wetlands over millennia. However, very few studies have applied paleoecological techniques to reconstruct long-term succession in tundra wetlands and thereby test the validity of existing hypotheses. This paper uses the paleoecological record of diatoms to investigate long-term development of individual polygons in a High Arctic wetland. Two landform processes were examined: (1) the millennial-scale development of a polygon-pond, and (2) the transition from low-center to erosive high-center polygons. Diatom assemblages were quantified from habitats associated with contrasting landforms in the present-day landscape, and used as an analog to reconstruct past transitions between polygon types. On the basis of this evidence, the paleoecological record does not support either of the existing models describing the predictable succession of polygon landforms in an arctic wetland. Our results indicate a need for greater paleoecological understanding, in combination with in situ observations in present-day geomorphology, in order to identify patterns of polygon wetland development and elucidate the long-term drivers of these landform transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avian ecosystem services such as the suppression of pests are considered being of high ecological and economic importance in a range of ecosystems, especially in tropical agroforestry. But how bird predation success is related to the diversity and composition of the bird community, as well as local and landscape factors, is poorly understood. The author quantified arthropod predation in relation to the identity and diversity of insectivorous birds, using experimental exposure of artificial, caterpillar-like prey on smallholder cacao agroforestry systems, differing in local shade management and distance to primary forest. The bird community was assessed using both mist netting (targeting on active understory insectivores) and point count (higher completeness of species inventories) sampling. The study was conducted in a land use dominated area in Central Sulawesi, Indonesia, adjacent to the Lore Lindu National Park. We selected 15 smallholder cacao plantations as sites for bird and bat exclosure experiments in March 2010. Until July 2011, we recorded several data in this study area, including the bird community data, cacao tree data and bird predation experiments that are presented here. We found that avian predation success can be driven by single and abundant insectivorous species, rather than by overall bird species richness. Forest proximity was important for enhancing the density of this key species, but did also promote bird species richness. The availability of local shade trees had no effects on the local bird community or avian predation success. Our findings are both of economical as well as ecological interest because the conservation of nearby forest remnants will likely benefit human needs and biodiversity conservation alike.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the local bird community in Central Sulawesi (Indonesia), with focus on insectivorous species in the agroforestry landscapes adjacent to the Lore Lindu National Park. All study sites were situated at the northern tip of Napu Valley in Central Sulawesi, Indonesia. After an initial mapping of the study area, we selected 15 smallholder cacao plantations as sites for our study in March 2010. These sides were mainly used for bird and bat exclosure experiments. All sited were situated along a local gradient (shade availability on each plantation) and a landscape gradient (distance to primary forest), which were independent from each other. In September 2010 and from February until June 2011, we assessed the bird community on our 15 study sites using monthly point count and mist netting sampling. Point count (20 minutes between 07 am and 10 am and in between the net checking hours) and mist netting surveys (12 hours, between 05:30 am and 17:30 pm) were conducted simultaneously but only once per month on each study site, to avoid habituation of the local bird community to our surveys. Further, point counts were conducted at least 100 m apart from the mist netting sites, to avoid potential disturbance between the two methods. We discarded all observations beyond 50 m (including those individuals that flew over the canopy) from the statistical analysis, as well as recaptures of individuals within identical mist netting rounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of = 0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ? 0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensiteychlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in d18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300° C ± 30° for chlorite-quartz at 32 m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10-11°/m in the vent region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Sm en -0.3, 87Sr/86Sr = 0.70235 - 0.70242, and 206Pb/204Pb = 18.22 - 18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Sm en -1.8, 87Sr/86Sr = 0.70245 - 0.70260, and 206Pb/204Pb = 18.73 - 19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with "plums" of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the "plums", initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the "plums" and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the "plums" could evolve to their more evolved isotopic composition after a period of 1.5-2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a lessdepleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as "plums" throughout the upper mantle, transported from depth by mantle plumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buried snowpack deposits are found within the McMurdo Dry Valleys of Antarctica, which offers the opportunity to study these layered structures of sand and ice within a polar desert environment. Four discrete buried snowpacks are studied within Pearse Valley, Antarctica, through in situ observations, sample analyses, O-H isotope measurements and numerical modelling of snowpack stability and evolution. The buried snowpack deposits evolve throughout the year and undergo deposition, melt, refreeze, and sublimation. We demonstrate how the deposition and subsequent burial of snow can preserve the snowpacks in the Dry Valleys. The modelled lifetimes of the buried snowpacks are dependent upon subsurface stratigraphy but are typically less than one year if the lag thickness is less than c. 7 cm and snow thickness is less than c. 10 cm, indicating that some of the Antarctic buried snowpacks form annually. Buried snowpacks in the Antarctic polar desert may serve as analogues for similar deposits on Mars and may be applicable to observations of the north polar erg, buried ice at the Mars Phoenix landing site, and observations of buried ice throughout the martian Arctic. Numerical modelling suggests that seasonal snows and subsequent burial are not required to preserve the snow and ice on Mars.