886 resultados para Tendon lesion
Resumo:
Background: Barrett's esophagus (BE) is a premalignant lesion that predisposes to esophageal adenocarcinoma. However, the reported incidence of esophageal adenocarcinoma in patients with BE varies widely. We examined the risk of malignant progression in patients with BE using data from the Northern Ireland Barrett's esophagus Register (NIBR), one of the largest population-based registries of BE worldwide, which includes every adult diagnosed with BE in Northern Ireland between 1993 and 2005.
Subjects and Methods: We followed 8522 patients with BE, defined as columnar lined epithelium of the esophagus with or without specialized intestinal metaplasia (SIM), until the end of 2008. Patients with incident adenocarcinomas of the esophagus or gastric cardia or with high-grade dysplasia of the esophagus were identified by matching the NIBR with the Northern Ireland Cancer Registry, and deaths were identified by matching with records from the Registrar General's Office. Incidence of cancer outcomes or high-grade dysplasia was calculated as events per 100 person-years (% per year) of follow-up, and Cox proportional hazard models were used to determine incidence by age, sex, length of BE segment, presence of SIM, macroscopic BE, or low-grade dysplasia. All P values were from two-sided tests.
Results: After a mean of 7.0 years of follow-up, 79 patients were diagnosed with esophageal cancer, 16 with cancer of the gastric cardia, and 36 with high-grade dysplasia. In the entire cohort, incidence of esophageal or gastric cardia cancer or high-grade dysplasia combined was 0.22% per year (95% confidence interval [CI] = 0.19% to 0.26%). SIM was found in 46.0% of patients. In patients with SIM, the combined incidence was 0.38% per year (95% CI = 0.31 to 0.46%). The risk of cancer was statistically significantly elevated in patients with vs without SIM at index biopsy (0.38% per year vs 0.07% per year; hazard ratio [HR] = 3.54, 95% CI = 2.09 to 6.00, P <. 001), in men compared with women (0.28% per year vs 0.13% per year; HR = 2.11, 95% CI = 1.41 to 3.16, P <. 001), and in patients with low-grade dysplasia compared with no dysplasia (1.40% per year vs 0.17% per year; HR = 5.67, 95% CI = 3.77 to 8.53, P <. 001).
Conclusion: We found the risk of malignant progression among patients with BE to be lower than previously reported, suggesting that currently recommended surveillance strategies may not be cost-effective. © The Author 2011. Published by Oxford University Press. All rights reserved.
Resumo:
The design of medical devices could be very much improved if robust tools were available for computational simulation of tissue response to the presence of the implant. Such tools require algorithms to simulate the response of tissues to mechanical and chemical stimuli. Available methodologies include those based on the principle of mechanical homeostasis, those which use continuum models to simulate biological constituents, and the cell-centred approach, which models cells as autonomous agents. In the latter approach, cell behaviour is governed by rules based on the state of the local environment around the cell; and informed by experiment. Tissue growth and differentiation requires simulating many of these cells together. In this paper, the methodology and applications of cell-centred techniques-with particular application to mechanobiology-are reviewed, and a cell-centred model of tissue formation in the lumen of an artery in response to the deployment of a stent is presented. The method is capable of capturing some of the most important aspects of restenosis, including nonlinear lesion growth with time. The approach taken in this paper provides a framework for simulating restenosis; the next step will be to couple it with more patient-specific geometries and quantitative parameter data.
Resumo:
The purpose of this study was to identify trends in the diagnosis of carcinoma in situ (CIS) of the breast in the United Kingdom (UK) and the Republic of Ireland (ROI) and to examine the impact of mammography. Data on cases of newly diagnosed CIS of the breast and mode of detection (screen detected or not) were obtained, where available, from regional cancer registries between 1990 and 2007. Age-standardised diagnosis rates for the UK and the ROI, and regional screen detected diagnosis rates were compared by calculating the annual percentage change (APC) over time. The APC of the diagnosis rate amongst women aged 50-64 years (original screening age group) showed a significant 5.9% increase in the UK (1990-2007) and 11.5% increase in the ROI (1994-2007). The rate of diagnosis (50-64 years) stabilized in the UK between 2005 and 2007 and was substantially higher than in other western populations with national screening programmes. The APC of the diagnosis rate amongst those aged 65-69 years showed a significant 12.4% increase in the UK (1990-2007) and 10.3% increase in the ROI (1994-2007). amongst women aged 50-74 years in the UK, approximately 4,300 cases of CIS (˜90% ductal carcinoma in situ) were diagnosed in 2007. Our analyses have shown that screen detected CIS contributed primarily to the increase in diagnosis of CIS of the breast. The high diagnosis rate of screen detected CIS of the breast underlines the need for further research into lesion and patient characteristics that are related to progression of CIS to invasive disease to better target treatment. © 2012 Springer Science+Business Media, LLC.
Resumo:
Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.
Resumo:
Recent track structure modelling studies indicate that radiation induced damage to DNA consists of a spectrum of different lesions of varying complexity. There is considerable evidence to suggest that, in repair-proficient systems, it is only the small proportion of more complex forms that is responsible for most of the biological effect. The complex lesions induced consist initially of clustered radical sites and a knowledge of their special chemistry is important in modelling how they react to form the more stable products that are processed by the repair systems. However, much of the current understanding of the chemical stage of radiation has developed from single-radical systems and there is a need to translate this to the more complex reactions that are likely to occur at the important multiple radical sites. With low LET radiation, DNA dsb may derive either from single-radical attack that damages both strands by a transfer mechanism, or from pairs of radical sites induced in close proximity, with one or more radical on each strand. With high LET radiation, modelling studies indicate that there is an increased probability of dsb arising from sites with more than two radical centres, leading to a greater frequency of more complex types of break. The spectrum of these lesions depends on the overall outcome of consecutive physical and chemical processes. The initial pattern of radical damage is determined by the energy depositions on and around the DNA, according to the type of radiation. This pattern is then modified by scavengers that inhibit the formation of radicals on the DNA, and by agents that either chemically repair (e.g. thiols) or fix (e.g. oxygen) a large fraction of these radicals. The reaction kinetics associated with clustered radical sites will differ from those of single sites: (1) because of the opportunities for interactions between the radicals themselves; and (2) because certain endpoints, e.g. a dsb, may require a combination of the products of two or more radicals. Fast response techniques using pulsed low and high LET irradiation have been established to measure the reactions of radical sites on pBR322 plasmid DNA with oxygen and thiols with a view to obtaining information about cluster size. This paper describes experimental approaches to explore the role of the chemical stage of the radiation effect in relation to lesion complexity.
Resumo:
Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.
Resumo:
All ionizing radiations deposit energy stochastically along their tracks. The resulting distribution of energies deposited in a small target such as the DNA helix leads to a corresponding spectrum in the severity of damage produced. So far, most information about the probable spectra of DNA lesion complexity has come from Monte Carlo studies which endeavour to model the relationship between the energy deposited in DNA and the damage induced. The aim of this paper is to establish methods of determining this relationship by irradiating pBR322 plasmid DNA using low energy electrons with energies comparable with the minimum energy thought to produce critical damage. The technique of agarose gel electrophoresis has been used to ascertain the fraction of DNA single- and double-strand breaks induced by monoenergetic electrons with energies as low as 25 eV. Our data show that the threshold electron energy for induction of single-strand breaks is
Resumo:
We have a developed a multiple-radical model of the chemical modification reactions involving oxygen and thiols relevant to the interactions of ionizing radiations with DNA. The treatment is based on the Alper and Howard-Flanders equation but considers the case where more than one radical may be involved in the production of lesions in DNA. This model makes several predictions regarding the induction of double strand breaks in DNA by ionizing radiation and the role of sensitizers such as oxygen and protectors such as thiols which act at the chemical phase of radiation action via the involvement of free radicals. The model predicts a decreasing OER with increasing LET on the basis that as radical multiplicity increases so will the probability that, even under hypoxia, damage will be fixed and lead to lesion production. The model can be considered to provide an alternative hypothesis to those of 'interacting radicals' or of 'oxygen-in-the-track'.
Resumo:
An important difference between chemical agents that induce oxidative damage in DNA and ionizing radiation is that radiation-induced damage is clustered locally on the DNA, Both modelling and experimental studies have predicted the importance of clustering of lesions induced by ionizing radiation and its dependence on radiation quality. With increasing linear energy transfer, it is predicted that complex lesions will be formed within 1-20 bp regions of the DNA, As well as strand breaks, these sites may contain multiple damaged bases, We have compared the yields of single strand breaks (ssb) and double strand breaks (dsb) along with those produced by treatment of irradiated DNA with the enzyme endonuclease III, which recognizes a number of oxidized pyrimidines in DNA and converts them to strand breaks. Plasmid DNA was irradiated under two different scavenging conditions to test the involvement of OH radicals with either Co-60 gamma-rays or alpha-particles from a Pu-238 source. Under low scavenging conditions (10 mM Tris) gamma-irradiation induced 7.1x10(-7) ssb Gy/bp, which increased 3.7-fold to 2.6 x 10(-6) ssb Gy/bp with endo III treatment. In contrast the yields of dsb increased by 4.2-fold from 1.5 x 10(-8) to 6.3 x 10(-8) dsb Gy/bp, This equates to an additional 2.5% of the endo III-sensitive sites being converted to dsb on enzyme treatment. For alpha-particles this increased to 9%. Given that endo III sensitive sites may only constitute similar to 40% of the base lesions induced in DNA, this suggests that up to 6% of the ssb measured in X- and 22% in alpha-particle-irradiated DNA could have damaged bases associated with them contributing to lesion complexity.
Resumo:
The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9 +/- 0.5 h and a slow component with a half-life of 16 +/- 9 h. For a particles, a fast component with a half-life of 0.7 +/- 0.4 h and a slow component with a half-life of 12 5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37 +/- 0.12) relative to low-LET radiation (0.22 +/- 0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites. (c) 2005 by Radiation Research Society.
Resumo:
PURPOSE:To examine associations between recognized genetic susceptibility loci and angiographic subphenotypes of the neovascular variant of age-related macular degeneration (nvAMD).METHODS:Participants (247 nvAMD, 52 early age-related macular degeneration [AMD], and 103 controls) were genotyped (complement factor H and ARMS2/HTRA1). nvAMD participants were assigned to one of two subcategories: mainly classic or mainly occult (based on the proportions of classic and occult choroidal neovascularization). nvAMD and early AMD were reassigned to two groups based on the extent and severity of drusen (retinal pigment epithelium dysfunction or not). Univariate and multivariate analysis were used to examine for associations between participant characteristics and genetic loci after adjusting for age, smoking status, and history of cardiovascular disease.RESULTS:Univariate analysis confirmed the known significant associations between AMD stage and age, hypertension, and a history of cardiovascular disease. Those with retinal pigment epithelium dysfunction (F = 5.46; P = 0.02) or a positive smoking history (F = 3.89; P = 0.05) were more likely to have been classified as having mainly an occult rather than a mainly classic lesion. Multivariate analysis showed that significant associations were noted with the number of ARMS2/HTRA1 risk alleles (P
Resumo:
Purpose
To compare the efficacy and safety of ranibizumab and bevacizumab intravitreal injections to treat neovascular age-related macular degeneration (nAMD).
Design
Multicenter, noninferiority factorial trial with equal allocation to groups. The noninferiority limit was 3.5 letters. This trial is registered (ISRCTN92166560).
Participants
People >50 years of age with untreated nAMD in the study eye who read =25 letters on the Early Treatment Diabetic Retinopathy Study chart.
Methods
We randomized participants to 4 groups: ranibizumab or bevacizumab, given either every month (continuous) or as needed (discontinuous), with monthly review.
Main Outcome Measures
The primary outcome is at 2 years; this paper reports a prespecified interim analysis at 1 year. The primary efficacy and safety outcome measures are distance visual acuity and arteriothrombotic events or heart failure. Other outcome measures are health-related quality of life, contrast sensitivity, near visual acuity, reading index, lesion morphology, serum vascular endothelial growth factor (VEGF) levels, and costs.
Results
Between March 27, 2008 and October 15, 2010, we randomized and treated 610 participants. One year after randomization, the comparison between bevacizumab and ranibizumab was inconclusive (bevacizumab minus ranibizumab -1.99 letters, 95% confidence interval [CI], -4.04 to 0.06). Discontinuous treatment was equivalent to continuous treatment (discontinuous minus continuous -0.35 letters; 95% CI, -2.40 to 1.70). Foveal total thickness did not differ by drug, but was 9% less with continuous treatment (geometric mean ratio [GMR], 0.91; 95% CI, 0.86 to 0.97; P = 0.005). Fewer participants receiving bevacizumab had an arteriothrombotic event or heart failure (odds ratio [OR], 0.23; 95% CI, 0.05 to 1.07; P = 0.03). There was no difference between drugs in the proportion experiencing a serious systemic adverse event (OR, 1.35; 95% CI, 0.80 to 2.27; P = 0.25). Serum VEGF was lower with bevacizumab (GMR, 0.47; 95% CI, 0.41 to 0.54; P<0.0001) and higher with discontinuous treatment (GMR, 1.23; 95% CI, 1.07 to 1.42; P = 0.004). Continuous and discontinuous treatment costs were £9656 and £6398 per patient per year for ranibizumab and £1654 and £1509 for bevacizumab; bevacizumab was less costly for both treatment regimens (P<0.0001).
Conclusions
The comparison of visual acuity at 1 year between bevacizumab and ranibizumab was inconclusive. Visual acuities with continuous and discontinuous treatment were equivalent. Other outcomes are consistent with the drugs and treatment regimens having similar efficacy and safety.
Financial Disclosure(s)
Proprietary or commercial disclosures may be found after the references.
Resumo:
Despite being common in epithelial malignancies, the timing of receptor tyrosine kinase (RTK) up-regulation is poorly understood and therefore hampers the identification of the receptor to target for effective treatment. We aimed to determine if RTK expression changes were early events in carcinogenesis. Esophageal adenocarcinoma and its pre-invasive lesion, Barrett's esophagus, were used for immunohistochemical analysis of the RTK panel, EGFR, ErbB2, ErbB3, Met and FGFR2, by utilising a cohort of patients with invasive disease (n = 367) and two cohorts with pre-invasive disease, one cross-sectional (n = 110) and one longitudinal in time (n = 91). The results demonstrated that 51% of esophageal adenocarcinomas over-expressed at least one of the RTK panel; with 21% of these over-expressing multiple receptors. Up-regulation of RTK expression was an early event corresponding with low grade dysplasia development (25% in areas without dysplasia vs. 63% in low grade dysplasia, p
Resumo:
Proprioceptive information from the foot/ankle provides important information regarding body sway for balance control, especially in situations where visual information is degraded or absent. Given known increases in catastrophic injury due to falls with older age, understanding the neural basis of proprioceptive processing for balance control is particularly important for older adults. In the present study, we linked neural activity in response to stimulation of key foot proprioceptors (i.e., muscle spindles) with balance ability across the lifespan. Twenty young and 20 older human adults underwent proprioceptive mapping; foot tendon vibration was compared with vibration of a nearby bone in an fMRI environment to determine regions of the brain that were active in response to muscle spindle stimulation. Several body sway metrics were also calculated for the same participants on an eyes-closed balance task. Based on regression analyses, multiple clusters of voxels were identified showing a significant relationship between muscle spindle stimulation-induced neural activity and maximum center of pressure excursion in the anterior-posterior direction. In this case, increased activation was associated with greater balance performance in parietal, frontal, and insular cortical areas, as well as structures within the basal ganglia. These correlated regions were age- and foot-stimulation side-independent and largely localized to right-sided areas of the brain thought to be involved in monitoring stimulus-driven shifts of attention. These findings support the notion that, beyond fundamental peripheral reflex mechanisms, central processing of proprioceptive signals from the foot is critical for balance control.
Resumo:
Some patients with coeliac disease, despite strict adherence to a gluten-free diet, continue to have significant symptoms and/or a severe small intestinal histological lesion. The term "refractory coeliac disease" (rCD) is used to describe this condition. The purpose of this study was to investigate the value of tissue molecular markers reported to help in the diagnosis of rCD.